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Chapter 1

Introduction and Motivation

1.1 Motivation and Physical Background

Astrophysically realistic scenarios such as colliding black holes are beyond the scope of analyt-
ical solutions in general relativity. Numerical Relativity aims to solve Einstein’s equation of the
gravitational field by the means of computer simulations. In contrast to perturbation theory, this
approach can also handle strong gravitational fields. Such simulations are essential for interpreting
the data from gravitational wave detectors. Beside the support of observational data, numerical
relativity is also important for theoretical studies of the structure of space and time itself. The
immense amount of numerical data produced by these simulations can only be appreciated using
appropriate visualization tools. The Einstein equation – shown explicitly in eqn. (2.43) – relates
the energy and momentum of some matter distribution to the geometry of spacetime. It is a tensor
equation, as neither the curvature of spacetime nor the properties of matter can be fully described
by scalar or vector fields. This exposes the problem of how to explore these central quantities of
general relativity: there are no off-the-shelf methods to visualize them. While many techniques
exist to cast the intuitive imagination of for scalar and vector fields into computer graphics, for
tensor fields such an intuitive vision does not even yet exist and rendering methods are rare.

The goal of this thesis is to develop methods for analyzing curved spacetimes, in particular
those expressed in purely numerical form. This work has been done at the Zuse-Institute Berlin
in cooperation with the Max-Planck Institute for Gravitational Physics in Potsdam; a review of
our collaboration group’s work can be found e.g. in the article by Allen et al. [AGL+99]. The
primary tool for computing numerical spacetimes was CACTUS [MPIfGP03]. Existing methods
have been investigated for their applicability to relativistic data, and new visualization algorithms
have been conceived for the exploration of curved spacetime. Special attention has been given
to intuitive perceptibility and high performance which enables interactivity. These efforts have
required a mathematically grounded framework that supports the language of general relativity.
For this purpose a new model for organizing numerical data has been developed. It has been kept
general in form, giving it relevance and applicability across a wide range of scientific data beyond
visualization of relativistic tensor fields. Moreover it will be demonstrated that some of the novel
display algorithms can also be applied well to data originating from other scientific domains.

1.2 State of the Art

As geometry plays a key role in Einstein’s concept of gravity, visualization of curved spacetime
has a long history in general relativity. Spacetime diagrams are frequently used in special rela-
tivity to depict space and time while omitting one or two spatial dimensions. Light propagation
appears as a cone originating at each point. Causality relationships in a general relativistic curved
spacetime can be displayed by placing light cones at selected points. Penrose extended the idea of
spacetime diagrams by employing special coordinate transformations to map infinite distances to
finite ones. These Penrose diagrams allow the depiction of topological and causality relationships
among parallel universes. Another common approach concentrating upon spatial geometry is the
computation of “embedding surfaces” (see 2.3.2). These allow use of our intuitive notion of flat
space to interpret the properties of a certain surface in curved space. The visualization of light
paths and particle trajectories is useful for investigating special properties and non-local causality
relationships. Beside visualizing geodesics within a coordinate frame (e.g. done by Bryson [Bry92]
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6 CHAPTER 1. INTRODUCTION AND MOTIVATION

in an interactive environment or Andrew and Fleming [AF92] using a CRAY), light-like geodesics
are also used to study the visual appearance of a curved spacetime. This technique, known as
relativistic raytracing, allows a direct comparison of astronomical observations with predictions of
Gravitational Lens theory (a review can be found in Schneider, Ehlers and Falco [SEF99]).

The term “tensor field” is very general, and many kinds of tensor fields occur in general rela-
tivity. Our main focus will be on tensor fields of rank two. These also occur in other domains such
as computational fluid dynamics and theory of elastic bodies. A straightforward approach involves
the rendering of ellipsoids (p.128). Several iconic techniques have been developed to emphasize cer-
tain features, such as the Haber glyph [Hab90], p.135, and the Reynolds glyph [MSM95], p.135.
Integrating eigenvectors is a frequent approach, as with Delmarcelle and Hesselink’s method of
hyperstreamlines [DH93]. In recent years new developments in medical image acquisition allow
measurement of the so-called diffusion tensor field in a human brain, leading to a revived inter-
est in appropriate visualization methods. Beside approaches to directly visualize the tensor data,
e.g. via volume rendering as presented by Kindlmann et al. [KWH00], several methods have been
specialized for tracking neuronal fibers.

The mathematical concept of a smooth manifold is used in many scientific simulations. Model-
ing it in a computer requires an appropriate discretization scheme. Frequently scientists approach
this with ad-hoc, specific purpose implementations. This complicates reuse of algorithms that
could profit from similarities in the discretization schemes. In particular, the description of data
for transfer among applications suffers under incompatible approaches of modeling the same math-
ematical structures. The data generated by a numerical simulation needs to be organized in an
appropriate way, such that some visualization system is able to interpret them. If we desire to
involve more applications in the process, we face an n2 problem, where we must equip n applica-
tions with each other’s interface. Designing a common model is a question of active research, and
no commonly accepted solution yet exists. This deficiency particularly troubled the U.S. ASCI
project, where many different institutions had to cooperate on the common task of nuclear weapon
design. As L.M. Cook and C.M. Matarazzo describe the problem [CM]: “Without a data model,
data are just numbers, or, even worse, bits”.

The mathematical language of general relativity is differential geometry. This allows the de-
scription of certain common manifolds as a bundle of a base space and a fiber space (see 2.1.3 for
the mathematical definition). This concept has inspired Butler and Pendley [BP89] to conceive
a data model for visualization purposes. Together with Bryson [BB92] they implemented a pro-
totype. Their pioneering ideas were developed in the IBM Data Explorer [Res97], which is now
known as OpenDX. Still, many visualization environments such as Amira [SWH04] and VTK [Kit]
do not implement a generic data model, but follow an ad-hoc approach for each data type category.
Butler himself continued classified work in on a common data model in the domain of the ASCI
project, and some efforts were integrated into the design of the HDF5 [NCS03] file format.

1.3 Rationale for a New Approach

Relativistic visualization techniques for analytic solutions are of limited applicability for nu-
merical relativity. Drawing light cones at one million points in a three-dimensional volume of
a discretized manifold (a typical, but still rather small size for numerical simulations) does not
lead to any visually interpretable result. Spacetime diagrams suffer from the need to omit spatial
dimensions. The physical fraction of spacetime covered by a numerical simulation usually is too
small to profit from Penrose diagrams. The differential equations leading to embedding surface do
not necessarily have a solution at all. Raytracing a numerical spacetime (currently) requires too
much computational time and memory to be used for interactive data exploration.

As seen from the theory of fiber bundles, the base space in general relativity is a four-dimensional
differentiable manifold, and the fiber spaces are tangential spaces or their generalizations. The
tangential spaces are the host of tensor fields of various flavors. Finding a unification scheme for
the many discretization approaches of the underlying base space is a topic of research by itself.
In the context of general relativistic tensor fields, we must also pay attention to non-trivial data
structures on the fiber space, as there exist tensors with covariant and contra-variant indices, of
rank two or more, and non-tensors such as the Christoffel symbols. It is common for numerical
relativity simulations to have up to 100 quantities per point in space. For instance, the central
tensor describing the curvature of spacetime – known as the Riemann curvature tensor, discussed
on p. 34 – consists of 256 components in a four-dimensional spacetime.

For the purpose of visualizing general relativistic tensor fields, significant work has to put in
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into operations on the fiber space. It is thus reasonable to implement these operations on a data
model organized as a fiber bundle to avoid re-implementation efforts for changes of the base space,
e.g. due to different discretization schemes. Here, we take up and extend Butler’s ideas (reviewed
in section 2.2.2). The concept of a fiber bundle is used in various ways, leading to a hierarchical
data structure of five levels. Beyond the formulation of a manifold with tangential spaces as fiber
bundle, the new model also utilizes fiber bundles to model data fields given on the skeletons (e.g.
vertices, edges, faces, cells) of a computational grid. It introduces the idea of abstract identifiers
when dealing with data entities instead of operating on the data itself, thereby achieving a level
of abstraction similar to coordinate-free formulations in general relativity. Based upon this ab-
straction level, it allows unification of frequently required operations on computational grids such
as coordinate transformations, grid interpolations, grid evaluations, and coefficient evaluations via
a common interface. The distinction between base space and fiber space allows high reutilization
of algorithms. It is demonstrated that by utilizing modern programming techniques such as C++
template metaprogramming the data model imposes no runtime overhead, whereas there is no pre-
viously published data model provides the same range of functionality. Its potential applicability
extends well beyond just visualization of general relativistic tensor fields. It can be used as core
architectural component of any visualization environment or numerical simulation, as well as for
the structuring of file formats and network protocols. A common data model becomes especially
crucial in the context of Grid computing where many applications are supposed to communicate.
The issues of Grid computing in conjunction with numerical relativity are discussed in more detail
by [BFN+99, BHM+00, HBM+00] and Allen et al. in [ABD+01a, ABD+01b]. Here, we will con-
centrate on the specific task of visualizing relativistic tensor fields with aspects of Grid computing
as background perspective.

Building upon the suitable basis of an appropriate data model, the final goal of visualizing tensor
fields by means of computer graphics is addressed via various newly conceived techniques, each of
them specialized for certain purposes. Analytically expressed “simple” spacetimes are used to build
an intuition for how various methods visualize curved spacetime. There is no claim in this thesis
that an ultimate solution has been found, but a set of new or adapted techniques (among them
those listed in fig. 1.1) is presented and analyzed for their applicability to general relativity. Many
existing approaches only compute and visualize scalar and vector quantities derived from a tensor
field, whereas the main goal of the methods conceived here is to display all tensorial quantities at the
same time (see fig. 1.2 for a demonstration of the difference). Conceiving such rendering techniques
for creating intuitively perceptible images extends in some respects into artistic dimensions, see also
our contribution to the Conference on the Interaction of Science and Art [BHH00]. As an example
of similar approaches, D. Laidlaw et al. [LAK+98] were inspired by the oil paintings of van Gogh
when developing their tensor field visualization method. The novel technique of “Tensor Splats”
is one of the most powerful techniques considering its ability to display intuitively interpretable
images. It is well-suited for displaying evolving features in general relativistic tensor fields and
enables to comprehend the geometrical properties of a numerical spacetime. Tensor splats can be
rendered quickly enough even in a three-dimensional volume, thereby supporting interactive usage
while still providing images of high quality.

1.4 Overview

The mathematical context of this dissertation will be reviewed in chapter 2, Theoretical Back-
ground. Chapter 3, Data Model Design and Architecture, presents the design of the newly conceived
data model and techniques for efficient implementation using modern features of the C++ program-
ming language. New and adapted rendering algorithms are discussed and compared in chapter 4,
Rendering Algorithms. The applicability of the data model and tensor field rendering methods
beyond general relativity is demonstrated in the appendix A.
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Figure 1.1: An overview of various tensor field visualization methods applied to a slice through an
MRI-aquired “diffusion tensor” field of a human brain.

=⇒

Figure 1.2: The maelstrom in spacetime produced by two colliding black holes – the output of a numerical
simulation – is hard to see using standard “scalar field” visualization methods (left: components of the
tensor field, see also fig. 4.70). It is easily perceptible using appropriate tensor field visualization methods
(right: method of “Tensor Splats”, see also fig. 4.47).



Chapter 2

Theoretical Background

In the first section the basic terms of differential and computational geometry are reviewed, starting from
the ground up by defining topological spaces from sets with certain properties. These definitions are used
when discussing discretized numerical spacetimes in the next section 2.2. The concept of a manifold with
charts is a central part of general relativity. It motivates the formalism of coordinate-free expressions that
allow highly abstract, powerful expressions. This abstraction provides an ideal “mathematical implemen-
tation” of the physical principle of covariance and therefore motivates the structure and terms of the
data model as presented in the succeeding chapter as an appropriate basis for performing visualization
tasks on tensor fields originating especially from general relativity. Here, we also derive the important
term “acceleration” in a coordinate-free way using the non-standard, but simple and elegant concept of
the “tangential transport” (not to be confused with the frequently used “parallel transport”), as it was
invented by P. Wagner [Wag94]. This approach demonstrates that acceleration is not just “the second
derivative by the time coordinate”, but involves structures beyond tensor fields. A data model that is
supposed to be appropriate for dealing with general relativistic data and their visualization must be able
to support all the mathematical structures that are required for a correct description of acceleration (and
other quantities, like curvature tensors). The concept of a fiber bundle is an appropriate framework and
is presented at the end of this section. It has inspired Butler and Pendley [BP89] to conceive a data
model for visualization purposes. Here, we take up on this idea and extend the original idea even further.

2.1 Mathematical Concept of a Continuous Spacetime

2.1.1 Manifolds and Tangential Spaces

We start with the assumption that the terms “set” and “power set” are known to the reader and may
now straightforwardly define the term “topology”:

Definition 1 Let X be a set and P(X) be the power set of X. A subset T ⊆ P(X) of the power set is
a topology iff

I.) arbitrary unions of elements of T are contained in T , i.e. if I is an arbitrary set of indices and
∀i ∈ I: Ui ∈ T , then

⋃

i∈I

Ui ∈ T ,

II.) finite intersections of elements of T are contained in T , i.e. if U0, . . . , Un ∈ T then
n⋂

i=0

Ui ∈ T
with n ∈ N,

III.) the empty set and the set X itself are contained in T , i.e. ∅,X ∈ T

Definition 2 The pair (X, T ) of a set together with a topology on this set is a topological space (possible
implementations shown in 2.2.2 and 3.1.1). The elements of a topological space are called points.

9



10 CHAPTER 2. THEORETICAL BACKGROUND

Examples:

1. The set X = {0, 1, 2, 3} with the topology T = {∅, {0}, {1, 2, 3}, {0, 1, 2, 3}} is a topological space.

2. The set X = {0, 1, 2, 3} with the topology T = {∅, {0}, {0, 1, 2, 3}} is a topological space as well.

3. The set X = {0, 1, 2, 3} with the subset T = {∅, {0}, {1}, {0, 1, 2, 3}} of the power set P(X) is not
a topological space because the union {0, 1} of two elements of T is not contained in T .

4. The set X = {0, 1, 2, 3} with the full power set T = P(X) is a topological space. Its topology is
called the discrete topology and is the finest topology possible. It contains 16 = 24 elements in the
given example. In general, the cardinality (number of elements) #P(X) of a power set P(X) is
related to the cardinality of the set #X via #P(X) = 2#X : each element of X can or cannot be
part of P(X), which results in 2#X possibilities.

5. A set X with the topology {∅,X} is a topological space, its topology is called the trivial topology
and is the coarsest topology possible. It always contains just 2 elements.

6. R with the set of open intervals T =

{
⋃

i

(ai, bi) : ai, bi ∈ R, ai < bi

}

is known as the standard

topology on R.

Definition 3 Let (X, T ) be a topological space. A subset U ⊂ X is called open iff it is contained in the
topology U ∈ T , i.e.

U ⊂ X open ⇐⇒ U ∈ T .

A subset V ⊂ X is closed, if its complementary set X\V is open.

For the examples given before we find:

1. The set {0} is open in example 1.), because it is contained in T . It is also closed, because its
complementary set {1, 2, 3} is contained in T as well.

2. In the topological space from example 2.) the set {0} is open and {1, 2, 3} is closed. The set {0, 1}
is neither open nor closed, because it is not contained in the topology, nor is its complementary set
{2, 3}.

3. The set (1, 2) is open in example 6.), the set [1, 2] is closed ([1, 2] is not in T ).

The empty set ∅ and the full set X are always open and closed at the same time.

Definition 4 A space X, where no other subsets than ∅ and X are open and closed at the same time, is
called connected.

Example: R is connected, R\{0} is not connected.

Figure 2.1: Different topologies on the set {0, 1, 2, 3}: The topological space of example 1.) (left figure)
is not connected (it contains two disjoint sets), whereas 2.) (right figure) is connected (each set of the
topology contains the set {0}).
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Definition 5 A subset A ⊆ X of a topological space (X, T ) is a neighborhood of an element p ∈ X iff
it contains an element O of T that contains p:

A ⊆ X neighborhood of p⇐⇒ ∃O ∈ T : p ∈ O,O ⊆ A

Note that a neighborhood is not necessarily contained in T , i.e. a neighborhood is not necessarily an
open or closed set.
Examples:

1. The set {0, 1, 2} is a neighborhood of the point 0 in the topological space from example 1.), but it is
not an element of the given topology. However, the set {0} is a neighborhood of 0 that is contained
in the topology.

2. The interval [1, 3] is a neighborhood of the point 2, but is not contained in the standard topology
of R, whereas (1, 3) is a neighborhood that is contained.

An alternative, less frequently used definition of topological spaces starts with the definition of (neigh-
borhood) sets U(p) ⊂ P(X) of neighborhoods U ⊆ X and requires (note that U(p) is a set of sets - the
“neighborhood set” or “set of neighborhoods”, whereas U is a set, a “neighborhood”):

I.) Each element of the neighborhood set contains the point p : ∀U ∈ U(p) : p ∈ U
and X always is a neighborhood, i.e. X ∈ U(p) (which can also be seen as a
consequence of III.).
Consequently, the neighborhood set is never empty U(p) 6= ∅.

II.) A superset of a neighborhood is a neighborhood, too: if U ⊂ V and U ∈ U(p)
then V ∈ U(p).

III.) The intersection of neighborhoods of the same point yields a neighborhood: if
U, V ∈ U(p) then U∩V ∈ U(p). More general, finite intersections of neighborhoods

yield neighborhoods again: if Ui ∈ U(p), then
n⋂

i=0

Ui ∈ U(p) with n ∈ N. The zero

intersection n = 0 is the set X, i.e. the set X is contained in the neighborhood
sets (alternatively to I.).

IV.) If U is a neighborhood of p, then there exists a (usually smaller) neighborhood
V such that U is a neighborhood of each point of V : ∀U ∈ U(p) : ∃V ∈ U(p)
such that ∀q ∈ V : U ∈ U(q).

Example: If U = [0, 5] a neighborhood of p = 2, then V = [1, 4] is such a
neighborhood of the point q = 3 .

A topological space can thus be constructed by

• a (base) set X of elements (“points”), the topological base

• for each element p ∈ X a set of neighborhoods U(p) whereby ∀U ∈ U(p) : p ∈ U

• for each two neighborhoods U, V ∈ U(p) there exists another neighborhood W , which is contained
in both: ∀U, V ∈ U(p) : ∃W ∈ U(p) : W ⊂ U ∩ V

These rules motivate the construction of “Topology objects” as part of the fiber bundle data model as
presented in the next chapter via “sets with neighborhood information”.

Definition 6 Two topological spaces X,Y are called homeomorphic, if there exists a bijective map
H : X → Y such that open sets of X are mapped to open sets in Y and vice versa, i.e. the neighborhood
relations must be sustained under this mapping. H is called a homeomorphism or topological map.



12 CHAPTER 2. THEORETICAL BACKGROUND

A common task of algebraic topology is to determine if two spaces are homeomorphic. Algebraic invari-
ants provide means to solve this problem. If the invariants of two spaces differ, then they cannot be
homeomorphic. One of these invariants is the Lebesgue covering dimension of a topological space. Its
definition is given here to show that the term “dimension” can be defined even for non-manifolds, such
that we can assign a dimensional number to any topological space - the “dimension” will thus be one
property of Topology objects, even if they do not describe manifolds.

Definition 7 A cover of a set X is a set of nonempty subsets of X whose union is X, i.e. C ∈ P(X) is
a cover iff

⋃

U∈C U = X.

A cover is called “open” (open cover of a topological space), if it is contained in the topology of the
respective space.

Definition 8 A topological space has Lebesgue covering dimension n if any open cover C has a
second open cover D (the refinement), where each element d ∈ D is a subset of an element in the first
cover, i.e. d ⊂ c with c ∈ C, such that no point is included in more than n+ 1 elements.

If a topological space is homeomorphic to R
n with n ∈ N, then its dimension is n. If a space does not

have Lebesgue covering dimension n for any n ∈ N, it is said to be infinite dimensional. The dimension of
the empty set ∅ is defined as −1. An alternative definition of the dimension of a topological space is given
by the Hausdorff dimension, which allows a generalization of the term “dimension” also to non-integer
numbers (fractal dimensions). However, this branch will not be addressed here.

Definition 9 Let X,Y be two sets. The cartesian product X × Y of the sets X and Y is defined as
the set of pairs (x, y) of elements from both spaces with x ∈ X, y ∈ Y .

This definition will be directly casted into “Product Arrays”, as described in 3.1.2.

Definition 10 The cartesian product X×Y of two topological spaces X, Y with the respective neigh-
borhood sets U(x) ⊂ P(X),V(y) ⊂ P(Y ) of the points x ∈ X, y ∈ Y is a topological space, if the neighbor-
hood sets U(x, y) of the point (x, y) ∈ X×Y are given by U(x, y) = {W : W ⊃ U × V : U ∈ U(x), V ∈ V(y)}.

The according topology is called the product topology. Multiple self-products of spaces are denoted as a
power Xn := X ×X . . .X

︸ ︷︷ ︸

n

.

Definition 11 A set X together with a function d : X ×X 7→ R is a metric space (X, d), if d fulfills
the following three properties for all x, y, z ∈ X:

I.) d(x, y) = d(y, x) (symmetric)

II.) d(x, y) = 0⇔ x = y (not degenerated)

III.) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality, positive definite)

d is called a distance function or (topological) metric.

Sometimes the property d(x, y) ≥ 0 (positive definite) is explicitly included in literature, but it actually
follows when inspecting the case x = z in III.) due to 0 = d(x, x) ≤ 2d(x, y), so this is redundant
information and can be omitted. A metric which allows d(x, y) = 0 also for x 6= y, i.e. replacing
condition II.) by the weaker condition d(x, x) = 0, is called a pseudo-metric. Note that the Minkowski
metric and spacetime metrics used in general relativity violate the triangle inequality condition III.) and
thus do not obey the definitions of a topological metric at all; this rarely discussed issue will be addressed
in the next paragraph.

Definition 12 Two metric spaces (X, dx), (Y, dy) are isometric, if a bijective map f , called the isom-
etry, between these two metric spaces exists that preserves distances, i.e.,

f : (X, dx)→ (Y, dy) isometry ⇐⇒ dy(f(x1), f(x2)) = dx(x1, x1) ∀x1, x2 ∈ X

Definition 13 Let (X, d) be a metric space. An open (ε-)ball at a point p ∈ X is the subset {q ∈
X|d(p, q) < ε}, ε ∈ R

+ of a metric space (X, d). A closed ball is the set {q|d(p, q) ≤ ε} with ε > 0.
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Note that the geometrical shape of a ball may be quite different from a sphere; it depends on the given
metric. Using the standard Euclidean metric on R

n, a ball has the intuitively expected spherical shape.
A certain metric d induces a topology on X, namely T = {⋃iBi : Bi open ε− ball}, with the ε-balls

as topological base. This topology is called a metric topology.

Definition 14 Two metrices d1, d2 on a given space X are called equivalent, if they sustain qualitatively
the same distance relationships, i.e.

d1, d2 equivalent⇐⇒ ∃C1, C2 > 0 : ∀x, y ∈ X : C2 d2(x, y) ≤ d1(x, y) ≤ C1 d2(x, y)

It follows that if two metrices are equivalent, then the topologies induced by them are identical, but the
metric spaces are not necessarily isometric:

(X, d1), (X, d2) isometric
6⇐⇒ d1, d2 equivalent

6⇐⇒ T1 = T2

Example: Equivalent metrices on R
n:

1. L1-norm: d1(x, y) =
n∑

i=1

|xi − yi| . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ε-balls are diagonal n-cubes

2. L2-norm: d2(x, y) =

√
n∑

i=1

(xi − yi)2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ε-balls are n-spheres

3. Lp-norm: dp(x, y) =

(
n∑

i=1

|xi − yi|p
)1/p

4. L∞-norm: d∞(x, y) = max|xi − yi| . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ε-balls are axis-aligned n-cubes

Definition 15 A topological space X is a Hausdorff [Hau14] space iff for any two distinct points x, y ∈
X there exist two distinct neighborhoods Ux, Uy such that Ux ∩ Uy = ∅:

X Hausdorff⇐⇒ ∀p, q ∈ Xwith p 6= q : ∃Up ∈ U(p) ∃Uq ∈ U(q) : Up ∩ Uq = ∅

Examples: The topological spaces from example 2.) and 3.) are not Hausdorff spaces, whereas example
4.) is a Hausdorff space.
Remark: Finite topological spaces are Hausdorff spaces iff their topology is the full power set (i.e. the
discrete topology). A set with the trivial topology is not Hausdorff (with the exception of sets that
contain only one element, where no distinct points exist at all).

Definition 16 A manifold is a Hausdorff space that is locally homeomorphic to Euclidean space R
n.

Example: Two crossing lines form a topological Hausdorff space, which is not a one-dimensional manifold
(although it can be embedded in a two-dimensional manifold).

Topology of Spacetime

The term “metric” is somewhat ambiguous when considering spacetimes; it still is a distance function,
thus deserving the name “metric”, but does not fulfill the requirements of a metric or pseudo-metric
that are required to construct metric spaces. Strictly speaking, while a Riemannian metric (only positive
distances allowed) is a (topological) metric in the sense of def. 11, a pseudo-Riemannian metric (which
allows negative distances) is not even a (topological) pseudo-metric. This “spacetime metric” is no
longer positive definite and thus the triangle inequality III.) no longer holds in a relativistic spacetime.
For instance, a triangle may easily be constructed with two sides of zero length (which are light-like) and
any other side which has non-zero length.
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This apparent contradiction is accomplished by not using the metric topology that is induced by the
spacetime (e.g. Minkowski) metric (which would not yield a topological space at all) on the underlying
space, but to assign the Euclidean topology to Minkowski spacetime. The approach of constructing a
metric space in general relativity is thus different to constructing a metric space from a (topological)
metric function. The Einstein equations cannot be used to determine the topology of the spacetime
manifold, but rather the topology needs to be imposed before a solution can be found. For instance, a
spacetime containing multiple black holes may be constructed from different topologies: “Misner” initial
data presumes that the throats connect a pair of asymptotically flat spacetimes which are identical to
each other, whereas “Brill-Lindquist” initial data connects each throat to a separate asymptotically flat
region.

Differentiable Manifolds

Definition 17 A chart {xµ}, µ = 0 . . . n − 1 is a homeomorphic mapping assigning an n-tuple of real-
valued numbers to each point p ∈M in a manifold M :

{xµ} : M −→ R
n

p 7−→ (xµ(p))

The numbers xµ(p) are the coordinates of the point p in the chart {xµ} xi is the ith coordinate function.
A chart may also be defined on just an open subset of M and R

n. Such a chart, which does not cover
the full manifold M , is a local chart. Interpreting the term “chart” xµ : M → R physically, it is actually
a description how to measure certain numbers (the coordinates) for a given point p ∈ M . It is thus not
possible to provide a further mathematical description of a chart function. Examples are the cartesian
coordinates {x, y, z} or the polar coordinates {r, ϑ, ϕ}. E.g. the cartesian coordinate function x is defined
by a length measurement, whereas the polar coordinate function ϑ is the measurement of an angle.

Once a chart is defined via its coordinate functions, further charts can be constructed from it via
coordinate transformations: Let {xµ} and {xµ̄} be charts. (Notation: for practical reasons we distinguish
between charts via their indexing, i.e. 1 6= 1̄, 2 6= 2̄ etc.). The inverse mapping {xµ}−1 of a chart
{xµ} (which exists because {xµ} is bijective) is a map R

n ⊇ I → M . The µ̄-th coordinate function
xµ̄(p), p ∈M thus can be expressed via the coordinate function xµ(p) as a composition:

{xµ̄}(p) = {xµ̄} ◦ {xµ}−1 ◦ {xµ}(p)

The resulting map {xµ̄} ◦ {xµ}−1 is a map R
n → R

n (called the transition functions) and can thus be
written in terms of algebraic expressions.

Definition 18 A set of (local) charts which all together cover the full manifold M with respective coor-
dinate transformations which are C∞, is a (C∞-)atlas.

An atlas A is compatible with another atlas Ā, if their respective coordinate transformations (i.e. the
transition functions) are C∞. The union of all atlases which are compatible to a certain atlas is a maximal
or complete atlas. It contains all possible charts for a given manifold. On the other hand, a set of charts
which contains the minimal number of charts that are required for a manifold, is a minimal atlas.

Definition 19 A differentiable manifold is a manifold (def. 16) with an atlas.

The cartesian product A × B of two manifolds A and B reveals a manifold A ⊗ B, where for each pair
of points p ∈ A and q ∈ B with coordinates (xi) and (yj) the point p × q is mapped to the coordinates
(xi, yj).

Curves, Lines and Tangential Vectors

Definition 20 A curve q is a continuous map q : R→ M : s 7→ q(s), which provides a point q(s) ∈ M
for a number s ∈ R.

s is called the curve parameter. The composition of a coordinate function and a curve function yields n
maps qµ(s) : R→ R where n is the dimension of the manifold M . These n functions are the representa-
tions of the curve q in the chart {xµ}:

qν(s) := xν(q(s)) ≡ xν ◦ q(s) (2.1)
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The set of all points of a curve within a manifold is a line. A certain line can be described by an infinite
number of curves with different parameterizations. The inverse map of coordinate functions (xµ)−1 are
maps R→M and thus are curves as well. Their corresponding lines are called coordinate lines. They are
the set of all points p ∈ M with all coordinate values fixed except one. (The “inverse of a measurement
description”: do measure all points and mark those which yield the same number.)

Definition 21 The tangential vector on a curve q(s) is defined as the differential operation d
ds , which

maps a function f : M → R to a number

d

ds
f ≡ d

ds
f(q(s)) := lim

h→0

f(q(s+ h))− f(q(s))

h
∈ R (2.2)

for each value s.

Note that f ◦ q : R → R, so the derivation can be computed algebraically. In a given chart {xµ} this
operation can be written as:

d

ds
f(q(s)) =

d

ds
f(x0(q(s)), x1(q(s)), x2(q(s)), . . . ) =

=
∂f

∂xµ

dxµ(q(s))

ds
=
dxµ(q(s))

ds

∂

∂xµ
f =

dqµ(s)

ds

∂

∂xµ
f =: q̇µ(s)

∂

∂xµ
f (2.3)

Here we made use of Einstein’s sum convention, that tells to implicitly sum over repeated covariant [lower]
and contravariant [upper] indices, as if

∑

µ were written above. Any tangential vector can be written as
a linear combination of derivatives by the coordinate functions:

d

ds
= q̇µ(s)

∂

∂xµ
=: q̇

The functions q̇µ are the components of the tangential vector q̇ in the chart (see also Hawking and
Ellis [HE73], p.15f). If f is a coordinate function xν , then d

ds yields the ν-th component q̇ν :

d

ds
xν(q(s)) = q̇µ(s)

∂xν

∂xµ
= q̇µ(s)δν

µ = q̇ν(s)

Definition 22 The partial derivatives by the coordinate functions fulfill the vector space axioms:

(a
∂

∂xµ
+ b

∂

∂xν
)f = a(

∂

∂xµ
f) + b(

∂

∂xν
f)

(with f being a function M → R and a, b ∈ R), and thus span a vector space, which is called the
tangential space Tp(M) of the manifold M at the point p.

The coordinate functions xµ induce a basis { ∂
∂xµ } in Tp(M). We will use the notation

∂µ :=
∂

∂xµ

for the basis vectors of a tangential space. Sometimes the notation ~∂µ is used to emphasize the vector
property of the partial derivative.

Chart Transition of Tangential Vectors The basis vectors of the tangential spaces {~∂µ} in a

chart{xµ} are related to their representation {~∂µ̄} in another chart {xµ̄} via a linear combination:

~∂µ̄ ≡
∂

∂xµ̄
=
∂xµ

∂xµ̄
· ∂

∂xµ
=: αµ

µ̄ · ~∂µ

αµ
µ̄ are abbreviations for the inner derivatives of the transition functions:

αµ
µ̄ :=

∂xµ(xµ̄)

∂xµ̄
αµ̄

µ :=
∂xµ̄(xµ)

∂xµ
(2.4)

A tangential vector v ∈ Tp(M) can be represented in various charts:

v = vµ∂µ = vµ̄∂µ̄ = vµ̄
(
αµ

µ̄∂µ

)
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Consequently, the components of a tangential vectors are transformed inversely as the basis vectors:

vµ = vµ̄αµ
µ̄ ∂µ = αµ̄

µ∂µ̄

This transformation rule guarantees that operations on the fundamental geometric object v are indepen-
dent from the used chart. The physical idea behind is

Definition 23 The principle of covariance: The laws of physics have to be formulated independently
of the observer and must not depend on the choice of a certain chart.

Example: The Newtonian law F = m ·a is valid in any coordinate system, not only in so-called “inertial
systems”. The force F between physical objects is clearly independent from the observer, as is the mass
m, too (in Newtonian physics). Accordingly, the acceleration has to be a quantity that is independent
from the observer. However, not for all observers the acceleration is simply the second derivative q̈ of a
curve q, as we will see in def. 46. If for a certain observer the second derivative of a line is identical to its
acceleration, he is called “inertial”. Other observers, e.g. those in a rotating coordinate system, which
wrongly interpret themselves as being inertial, will find non-physical (“virtual”) forces (e.g. “centrifugal
force”, “coriolis force”) to occur, i.e. forces which depend on the motion of the observer, but not on
the (kinematic, dynamic) properties of the objects under investigation themselves. We will discuss a
coordinate-free definition of the term “acceleration” on pp.29.

The inner derivatives αµ
µ̄ can be written as n× n coordinate transformation matrices. To handle the

transition between two charts, actually four such coordinate transformation matrices are required. Each
of the two transformation matrices (for both transition directions) needs to be provided in both charts.

Example: Transformation matrices in R
3, with cartesian {xµ} → polar {xµ̄} in cartesian coordinates:

αµ
µ̄(x, y, z) =








∂x
∂r = x√

x2+y2+z2

∂x
∂ϑ = x·z√

x2+y2

∂x
∂ϕ = −y

∂y
∂r = y√

x2+y2+z2

∂y
∂ϑ = y·z√

x2+y2

∂y
∂ϕ = x

∂z
∂r = z√

x2+y2+z2

∂z
∂ϑ = −

√

x2 + y2 ∂z
∂ϕ = 0








αµ̄
µ(x, y, z) =








∂r
∂x = x√

x2+y2+z2

∂r
∂y = y√

x2+y2+z2

∂r
∂z = z√

x2+y2+z2

∂ϑ
∂x = x·z√

x2+y2·(x2+y2+z2)

∂ϑ
∂y = y·z√

x2+y2·(x2+y2+z2)

∂ϑ
∂z = −

√
x2+y2

x2+y2+z2

∂ϕ
∂x = − y

x2+y2
∂ϕ
∂y = x

x2+y2
∂ϕ
∂z = 0








Transformation matrices polar {xµ̄} → cartesian {xµ} in polar coordinates:

αµ
µ̄(r, ϑ, ϕ) =






∂x
∂r = sinϑ cosϕ ∂x

∂ϑ = r cosϑ cosϕ ∂x
∂ϕ = −r sinϑ sinϕ

∂y
∂r = sinϑ sinϕ ∂y

∂ϑ = r cosϑ sinϕ ∂y
∂ϕ = r sinϑ cosϕ

∂z
∂r = cosϑ ∂z

∂ϑ = −r sinϑ ∂z
∂ϕ = 0






αµ̄
µ(r, ϑ, ϕ) =






∂r
∂x = sinϑ cosϕ ∂r

∂y = sinϑ sinϕ ∂r
∂z = cosϑ

∂ϑ
∂x = cos ϕ cos ϑ

r
∂ϑ
∂y = sin ϕ cos ϑ

r
∂ϑ
∂z = − sin ϑ

r
∂ϕ
∂x = − sin ϕ

r sin ϑ
∂ϕ
∂y = cos ϕ

r sin ϑ
∂ϕ
∂z = 0






Covectors

Let v ∈ Tp(M) be a vector and f : M → R a real-valued function on the manifold. Then applying the
tangential vector v on f yields a number:

v(f) ∈ R

In def. 21 we examined this expression for a fixed vector v and arbitrary function f . Alternatively, we
can study it for arbitrary vectors v and a fixed function f . This way it defines a function df which maps
a tangential vector v to a number df(v) ∈ R:

df : Tp(M) −→ R

v 7−→ df(v) := v(f)
(2.5)

The function df is called a 1-form. 1-forms fulfill the vector space axioms:

(a · df + b · dg)(v) = v(a · f + b · g) = a · v(f) + b · v(g) = a · df(v) + b · dg(v)
and thus span a vector space, called the cotangential space T ∗

p (M); its elements, called covectors (a direct
visualization is given in 4.1.2), are the linear maps Tp(M)→ R.



2.1. MATHEMATICAL CONCEPT OF A CONTINUOUS SPACETIME 17

Coordinate Expression In a chart {xµ} eq.(2.5) can be written in terms of the basis vectors ∂µ, i.e.
the partial derivatives by the respective coordinate functions:

df(v) = v(f) = vµ∂µ(f) = vµ ∂f

∂xµ
=: vµf,µ (2.6)

Thus in a chart of a manifold of dimension n a covector is constructed by n numbers, like a tangential
vector. In matrix notation1, a tangential vector and covectors are written as a column and row vectors,
such that their product yields a number:

vµf,µ =
(
f,1 f,2 · · · f,n

)
·








v1
v2
...
vn







∈ R

If we take v as the µ-th basis vector ∂µ, then we directly get the derivative of the function f by the µth
coordinate function:

df(∂µ) = ∂µ(f) =
∂f

∂xµ
= f,µ

On the other hand, if we let f be the µ-th coordinate function xµ, we directly get the µth vector
component:

dxµ(v) = dxµ(vν∂ν) = vν ∂x
µ

∂xν
= vνδµ

ν = vµ

Therefore we see that a covector just “sees” the projection of a tangential vector in which the covector
points. Any covector can be written as a linear combination of such “projections” along the coordinate
functions:

df(v) = vµf,µ = dxµ(v) · f,µ = f,µ ·dxµ(v)

In other words, the coordinate functions {xµ} induce a basis {dxµ} in the cotangential space T ∗
p (M):

df = f,µdx
µ ≡ ∂f

∂xµ
dxµ (2.7)

Equation (2.7) is also called the total differential of a function f . Often the notation of a scalar product
is used for the application of a covector on a vector:

Definition 24 The scalar product of a covector and a vector is defined as the action of the covector on
the vector:

< df, v >:= df(v)

This operation is also called an index contraction, because in a chart it appears as a cancellation of a
lower index with upper index:

< df, v >=< f,µdx
µ, vν∂ν >= f,µv

ν < dxµ, ∂ν >= f,µv
νδµ

ν = f,µv
µ

The basis vectors of the tangential space ∂µ are orthogonal to the basis vectors of the cotangential space
dxµ, i.e. the cotangential space T ∗

p (M) and the tangential space Tp(M) are dual. With V ∈ T ∗
p (M) and

u ∈ Tp(M), then < V, u >∈ R yields a number. Alternatively, one can interpret this operation as the
application of a tangential vector on a covector. Thus the tangential space can also be interpreted as the
space of linear functions T ∗

p (M)→ R, or T ∗∗
p (M) ≡ Tp(M) with “∗” the duality operation.

Covector Chart Transition Covectors transform inversely as compared with the tangential vectors:

df = fµdx
µ = fµ̄dx

µ̄ = fµ̄(αµ̄
µdx

µ) ,

thus
fµ = αµ̄

µfµ̄ .

1 Note that the order of expressions is not relevant in index notation, i.e. vµf,µ ≡ f,µvµ, whereas in matrix notation
the order is crucial.
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Application Example To support the concept of covectors and coordinate-free formulations, a very
practical computational problem will be given here: the ray/surface intersection problem for a spherical
height field. This task is to be solved when e.g. some digital elevation model is given for a planetary
surface which shall be rendered using the raytracing technique. The problem is stated as follows

1. Given a ray g(λ) = O + λ~d with O the ray’s starting point, λ the ray’s parameter and ~d the ray’s
direction,

2. and h(ϑ, ϕ) a height field function on a spherical surface,

3. find the ray parameter λ such that the radial coordinate of g(λ) is identical to h(ϑ, ϕ) for its
spherical coordinates ϑ, ϕ.

Clearly, each point on the ray has unique polar coordinates, which can thus be formulated as func-
tions r(λ), ϑ(λ), ϕ(λ) of the ray parameter λ. The problem of finding a ray/surface intersection is then
formulated as searching the minimal solution λ > 0 of the equation

f(λ) := r(λ)− h (ϑ(λ), ϕ(λ)) = 0 . (2.8)

Since h(ϑ, ϕ) is an arbitrary function, this equation is best solved by a combination of the Newton method
and interval bisection. For doing so, we need the derivative f ′(λ). From (2.8) we get:

f ′(λ) =
dr

dλ
− ∂h

∂ϑ

dϑ

dλ
− ∂h

∂ϕ

dϕ

dλ
(2.9)

We find that ( dr
dλ ,

dϑ
dλ ,

dϕ
dλ ) is just the direction of the ray g(λ) in polar coordinates. It can be computed

from the ray’s cartesian direction ~d by multiplication with the appropriate transformation matrix (2.4).
Since f ′(λ) is a number depending linearly on the ray direction, we may interpret it as covector of the

form V = (1,−h,ϑ ,−h,ϕ ) such that f ′(λ) ≡< V, ~d > along the ray. As (2.8) can be evaluated at any
point p via F (p) := r(p) − h (ϑ(p), ϕ(p)), were r(p), ϑ(p), ϕ(p) are the polar coordinates of the point p,
we see that the covector V is just the total derivative V = dF of the “potential function” F , whereby
f(λ) = F (g(λ).

In the Newton method of finding roots of an unknown, but “sufficiently linear” function, we write the
potential function F as Taylor series of first order in the ray parameter and expect that an appropriate
step δλn+1 brings us closer to the requested point where f = 0:

f (λn+1) = f (λn) + δλn+1f
′ (λn) ≈ 0

By assuming that the next point n+ 1 already is the exact intersection point F = 0, we get an estimate
for the step width (using f ′ =< dF, ~d >):

δλn+1 = −F (g(λn))

< dF, ~d >
. (2.10)

This operation now needs to be repeated until |F | falls below a given tolerance. Note that eq.(2.10) is
written completely coordinate-free, so it can directly be used for height fields given on arbitrary two-
dimensional manifolds, as long as coordinate transformations from three-dimensions onto appropriate
manifold coordinates and transformation matrices are given. Even more, this method also works for
arbitrary curves, not just straight lines in cartesian coordinates, as we may write eq.(2.10) with an
arbitrary curve q(s):

δλn+1 = −F (q(λn))

< dF, q̇ >
(2.11)

Finally we also show the coordinate expression, where q is given in a chart {xµ} as the components
qµ(λn) with according tangential vector q̇µ(λn) and the potential function F is given in another chart
{xµ̄({xµ})} with transformation matrix αµ̄

ν (2.4):

δλn+1 = −F
(
xµ̄ (qµ(λn))

)

F,µ̄ α
µ̄
ν q̇ν

(2.12)

Note that transforming the covector dF into cartesian coordinates or the tangential vector q̇ into height
field coordinates is equivalent, so either can be done, depending on numerical choices and performance
considerations.
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Tangent map

Let M,N be manifolds and q(t) : R→M a curve M . Moreover let Φ : M → N be a map from M to N .
By virtue of Φ a curve q̂(t) : R→ N is defined as q̂(t) := Φ(q(t)).

M
Nq(t)

Φ
q̇

T (Φ)
q̂(t)

˙̂q

Let q̇(t) ∈ Tq(t)(M) denote the tangential vector on q and ˙̂q(t) ∈ Tq̂(t)(N) denote the tangential vector
on q̂(t). Using the two charts {xν} on M and {xµ} on N we find a linear relationship between both
tangential vectors:

˙̂q(t) = ˙̂q(t)ν∂ν =
dq̂(t)ν

ds
∂ν =

dΦν(qµ(t))

ds
∂ν =

∂Φν

∂xµ

dq(t)µ

ds
∂ν =: T (Φ) (q̇(t))

This map T (Φ) : Tq(t)(M)→ Tq̂(t)(N) is called the tangent map or differential of the map Φ.

Flow maps

A vector field v ∈ T 1(M) defines an array of integral curves Φ by equating the tangential vector on Φ
with the vector at each point, i.e. Φ̇(p) = v(p) ∀p ∈ M . This array of integral curves defines the flow
map Φt(p) : R×M →M which fulfills the properties:

Φ0(p) = p

Φs(Φt(p)) = Φs+t(p)
d
dtΦt(p)

∣
∣
t=0

= Φ̇0(p) = v(p)

Φt1(p0)

Φt1(p1)

Φt1(p2)
Φt2(p0)

Φt2(p1)
Φt2(p2)

p0

Φ̇(p0)
p1

p2

We might use the short notation Φ̇ := Φ̇0 in the succeeding text.
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Lie-Derivative

The Lie derivative is a coordinate-dependent operation on vector fields which does not rely on any
underlying structure of the manifold. In contrast, the partial derivative of a vector field is not a tensor
(i.e. it is not coordinate-independent), and the directional derivative of a vector field (see 2.1.2) involves
additional structures, especcially requires knowledge of the manifold’s curvature. The Lie derivative is a
more fundamental structure and is directly related to the flow map as will be shown now.

Let u, v ∈ T 1(M) be vector fields. Then the vector field u defines a flow map Φt(p) with Φ̇ = u.
The pullback map Φ∗

t transports vectors from the tangential space at the transported point Φt(p0) to the
original point p0, i.e. Φ∗

t : TΦt(p0)(M)→ Tp0
(M). It is defined via the tangent map:

Φ∗
t ( v(Φt(p)) ) := T (Φ−1

t )( v(Φt(p)) )

By virtue of the pullback map we may now compare this transported vector with the value of the vector
field at the point p0, which leads to the definition of the Lie-derivative as the infinitesimal change of a
vector field under the pullback map:

Luv :=
d

dt
Φ∗

t ( v(Φt(p0) ) )

∣
∣
∣
∣
t=0

:= lim
t→0

[
1

t
(Φ∗

t (v(Φt(p0)))− v(p0))

]

Φ
.

0v( p   )

vLt .

Φ∗
t (v(Φt(p0)))

Φ̇0(p0)

p0

Φt(p0)

Φ

v(Φt(p0))

Φ∗
t

In a chart {xµ} the Lie derivative becomes:

Luv =
d

dt

(
∂(Φ−1

t )µ

∂xν
vν(Φt(p))∂µ

)∣
∣
∣
∣
t=0

=
∂(Φ−1

t )µ

∂xν

∣
∣
∣
∣
t=0

︸ ︷︷ ︸

δµ
ν

∂vν

∂xσ

d(Φt(p0))
σ

dt

∣
∣
∣
∣
t=0

︸ ︷︷ ︸

uσ(Φt(p))|t=0

∂µ +

[
∂

∂xν

(
d(Φ−1

t )µ

dt

)∣
∣
∣
∣
t=0

]

vν(Φt(p0) )|t=0 ∂µ = . . .

Whereby we may use that the inverse flow map is given by just inversing the flow parameter, i.e. the
inverse flow map is given by simply transporting into the opposite direction:

d(Φ−1
t )(p)

dt

∣
∣
∣
∣
t=0

=
d(Φ−t)(p)

dt

∣
∣
∣
∣
t=0

= − d(Φs)(p)

ds

∣
∣
∣
∣
t=0
s=−t

= −Φ̇(p) = −u(p)

And thus we finally find:

Luv = · · · = δµ
ν

∂vν

∂xσ
uσ(Φt(p))|t=0 ∂µ +

[
∂

∂xν
(−uµ(p0))

]

vν(p0)∂µ

= vµ,σ u
σ∂µ − uµ,ν v

ν∂µ = u(v)− v(u) =: [u, v] ,

i.e. the Lie derivative is given by the commutator of two vector fields.
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Tensor Fields

Es seien gewisse Dinge (“Tensoren”) in Bezug auf jedes Koordinatensystem definiert durch
eine Anzahl Raumfunktionen, welche die “Komponenten” des Tensors genannt werden.

Foundation of General Relativity, Albert Einstein, 1916, [Ein16]

Definition 25 An m × n tensor F is a multilinear mapping from cartesian products of n tangential
spaces Tp(M) and m cotangential spaces T ∗

p (M) into R at some point p of a manifold M:

F : (Tp(M))
n ×

(
T ∗

p (M)
)m multilinear−→ R

n×m is the rank of the tensor. The vector space spanned by tensors is called the tensor product space

(
T ∗

p (M)
)⊗n ⊗ (Tp(M))

⊗m
:=

{

(Tp(M))
n ×

(
T ∗

p (M)
)m multilinear−→ R

}

, (2.13)

whereby X⊗n denotes the nth tensor product of the space X with itself, similar to the power of a set
constructed via the cartesian product from def. 10. Due to the duality relations T ∗

p (M) ↔ Tp(M), the
tensor product space can be seen as the space of linear functions that map elements from the dual tensor
product space to a number:

(
T ∗

p (M)
)⊗n ⊗ (Tp(M))

⊗m
=

{

(Tp(M))
⊗n ⊗

(
T ∗

p (M)
)⊗m linear−→ R

}

(2.14)

With V,U two tensor product spaces, we see

V ⊗ U (2.13)
=

{

V ∗ × U∗ multilinear−→ R

}
(2.14)
=

{

V ∗ ⊗ U∗ linear−→ R

}

and

V ∗ ⊗ U∗ (2.13)
=

{

V × U multilinear−→ R

}
(2.14)
=

{

V ⊗ U linear−→ R

}

.

It follows from (2.14) that V ∗ ⊗ U∗ ≡ (V ⊗ U)
∗
. Equivalence relationships of this kind constitute the

basis of the Sophus library [MKH95], which is an interesting approach of employing coordinate free
mathematics in scientific computing.

Definition 26 An m× n tensor field F is a map from each point p of a manifold to an m× n tensor:

F : M −→
(
T ∗

p (M)
)⊗n ⊗ (Tp(M))

⊗m

A tensor field of rank 0× 0 is a scalar field M → R. A tensor field of rank 0× 1 is a vector field v : M →
Tp(M). A relevant type of tensors are symmetric tensors of rank 2× 0, i.e. with G ∈ T ∗

p (M) ⊗ T ∗
p (M),

v, w ∈ Tp(M) tangential vectors:

G : Tp(M)× Tp(M) → R ,

(v, w) 7→ G(v, w)

i.e. each pair of tangential vectors v, w is mapped into a number at each point in the manifold. A
tensor is symmetric, if G(v, w) = G(w, v). Symmetric tensors span a vector subspace which is sometimes
denoted using the symbol s© such as T ∗

p (M) s©T ∗
p (M). Elements U ⊗V are written as u⊗v with u ∈ U

and v ∈ V . For symmetric products, the tensor product symbol is omitted such that uv ∈ U s©V . This
notation is usually only seen for base vectors like du dv with du a basis vector of U and dv a basis vector
of V , otherwise it might be confused with the dot product of two vectors. Given a tensor product u⊗ v
of two tensors u, v, the symmetric component can be constructed easily as uv ≡ u s©v = 1

2 (u⊗ v+ v⊗u).
For a fixed vector field v, a 2× 0 tensor G defines a mapping Tp(M)→ R:

G(v,−) : Tp(M) → R (2.15)

w 7→ G(v, w)

This way we have defined tensor fields as a map which assigns to each point of a manifold an object that
carries vector space properties. Alternatively, we can omit the notion of objects living in the tangential
space and directly define a tensor field as functions on a manifold which possess certain vector space
properties:
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Definition 27 A vector field v on a manifold M is a function from C∞(M) to C∞(M) satisfying the
following properties:

v(f + g) = v(f) + v(g) (2.16)

v(a · f) = a · v(f) (2.17)

v(f · g) = v(f) · g + f · v(g) (Leibniz rule) (2.18)

for all f, g ∈ C∞(M) and a ∈ R [BM94].

To see that this definition is equivalent with the previous ones, we may think of a vector field as the
tangents of a set of curves {q(s) : R → M} that cover each point of the manifold. We now inspect the
properties of the derivatives of functions f, g ∈ C∞(M) by the curve parameters to find:

d

ds

(

f
(
q(s)

)
+ g

(
q(s)

))

=
d

ds
(f) +

d

ds
(g) (2.19)

d

ds
(a · f) = a · d

ds
(f) (2.20)

d

ds
(f · g) =

(
d

ds
f

)

· g + f ·
(
d

ds
g

)

(2.21)

Clearly, the operation d
ds possesses the same properties as the vector field definition above, but def. 27

does not depend on the definition or existence of curves (e.g. integral curves are not necessarily existent
or contiguous on the entire manifold), but completely covers the entire manifold.

Chart Transition An n×m tensor is written in a chart {xµ} as

T = T ν1,ν2,...,νm
µ1,µ2,...,µn

∂µ1
⊗ ∂µ2

⊗ · · · ⊗ ∂µn
⊗ dxν1 ⊗ dxν2 ⊗ · · · ⊗ dxνm .

The T ν1,ν2,...,νm
µ1,µ2,...,µn

are the components of the tensor T in the chart {xµ}. The chart transition rules can
be directly read off from the transition rules of the basis vectors and is just the multiplication of each
tensor component with an appropriate chart transition matrix (2.4) such that the indices cancel in the
resulting expression:

T ν̄1,ν̄2,...,ν̄m

µ̄1,µ̄2,...,µ̄n
= T ν1,ν2,...,νm

µ1,µ2,...,µn
αµ1

µ̄1
αµ2

µ̄2
. . . αµn

µ̄n
αν̄1

ν1
αν̄2

ν2
. . . αν̄m

νm
(2.22)

Often the definition of tensors and tensor fields starts with the chart transition rule and it is said, that
every object that obeys the chart transition rule (2.22) is a tensor. This approach of defining tensors
hides the view to the underlying idea of coordinate-free formulation because it starts with the view
of tensor fields in certain (although arbitrary) charts. However, charts are not required when speaking
about tensor fields. Many properties can be discussed without looking at the coordinate expression at all.
Dealing with coordinate expressions is only required when actually performing numerical computations,
but when dealing with mathematical equations coordinate expressions contain the danger of becoming
coordinate-dependent.

Metric Tensor Field

In def. 11 we made use of a function that maps two elements of a topological space to a number in a
certain way. Now considering elements of the tangential space, i.e. tangential vectors, we may use a
linear function to provide a clue of the distance between two tangential vectors; such a function conforms
to the definition of a tensor field:

Definition 28 The metric tensor field g is a symmetric tensor field

g : Tp(M)× Tp(M)→ R .

It maps two tangential vectors to a number (symmetric bilinear form).

Metric tensor fields possess certain coordinate-invariante properties which determine the properties of
the underlying manifold:

Definition 29 Let λi be the signs of the eigenvalues of a metric tensor. The difference of the number
of positive and negative components is the signature of the metric tensor. It is written as an (ordered)
n− tuple of signs, eg. (+,+,−,−).
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A metric tensor field has constant signature for the entire manifold. The signature does not depend on
the choice of coordinates, the required eigenvalues can be computed in any chart.

In special and general relativity, a pseudo-Riemannian metric tensor field of signature (+,−,−,−) is
used (the alternative, but equivalent convention (−,+,+,+) can also be found in literature sometimes).
Note that a pseudo-Riemannian metric is no longer a metric in the topological sense of def. 11 and
cannot be used to construct metric spaces, as discussed in 2.1.1. As a distance function on elements of
the tangential space, it allows to distinguish tangential vectors into three categories:

• g(v, v) > 0 ←→ v “timelike”

• g(v, v) = 0 ←→ v “lightlike”

• g(v, v) < 0 ←→ v “spacelike”

The metric tensor allows to define the length of a timelike tangential vector (which has a physical meaning
of time)

|v| :=
√

g(v, v) (2.23)

as well as the length of a spacelike tangential vector:

|v| :=
√

−g(v, v) (2.24)

and the angle between a pair of spacelike tangential vectors:

cosα(u, v) :=
−g(u, v)
|u| |v| =

−g(u, v)
√

g(u, u) g(v, v)
(2.25)

or even timelike tangential vectors

coshα(u, v) :=
g(u, v)

|u| |v| =
g(u, v)

√

g(u, u) g(v, v)
. (2.26)

The angle of lightlike tangential vectors is undefined; because the metric length g(v, v) of a lightlike
tangential vector v 6= ~0 is null, it can be said that a lightlike tangential vector is “orthogonal to itself”
at the same time as it is “tangential to itself”, such that angular relationships of lightlike vectors do not
make much sense at all. It would only make sense to compare the angles of their spatial projections, i.e.
the directions of infalling light rays – which is then coordinate-dependent, because a spatial projection
can only be done using a certain chart.

Definition 30 A line is timelike if its tangent vectors are timelike at any point of the curve:

q timelike ⇐⇒ g (q̇(s), q̇(s)) > 0 ∀s

Such a line is also called a worldline. Analogously a spacelike line can be defined. However, spacelike
lines are not as relevant in physics as timelike lines.

Definition 31 The metric tensor defines the length of a curve (or line) q:

l12 =

s2∫

s1

√

±g(q̇(s), q̇(s))ds

Definition 32 The length of a timelike curve is called the proper time, the length of a spacelike curve is
the proper distance.

The length of a lightlike curve is always zero. The length of a curve which is partially timelike, spacelike
and/or lightlike has no physical meaning.

By the means of timelike vectors the four-velocity is defined for a pseudo-Riemannian manifold:

Definition 33 The four-velocity of a wordline is defined as:

u :=
q̇

√

g(q̇, q̇)

The norm of the four-velocity |u| =
√

g(u, u) is always 1, as can be seen easily. It is a timelike vector.
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Coordinate Expression and Chart Transition In a chart {xµ} we write tangential vectors as
linear combinations of their basis vectors and make use of the linearity properties of the metric tensor
field to derive a coordinate expression:

g(u, v) = g(uµ∂µ, v
ν∂ν) = uµvνg(∂µ, ∂ν) =: uµ · vν · gµν

gµν are called the components of the metric tensor g in the chart {xµ}. Using basis vectors of T ∗
p (M)×

T ∗
p (M) it is also often written as the advance of a small distance ds:

ds2 = gµνdx
µdxν

The matrix

(gµν) =








g00 g01 . . . g0n

g10 g11 . . . g1n

...
...

...
gn0 gn1 . . . gnn








is the representation of the metric tensor G in the chart {xµ}. Due to the symmetry of g, it follows

for the components that gµν = gνµ and only n(n+1)
2 of the n2 components in an n-dimensional space are

independent.
As a special case of (2.22), the chart transition of the metric tensor’s components becomes:

gµ̄ν̄ = gµνα
µ
µ̄α

ν
ν̄

Example: The Euclidean metric tensor η is a unit matrix ηµν = δµν in a Euclidean chart, with δ
the Kronecker symbol. Using the transformation matrices for transition between cartesian and polar
coordinates (see p.16) and a little algebra we find that the Euclidean metric tensor in a polar chart
{r, ϑ, ϕ} becomes

(gµν) =





1
r2

r2 sin2 ϑ



 (2.27)

or
ds2 = dr2 + r2dϑ2 + r2 sin2 ϑdϕ2 .

Example: Given a spatial velocity vector ~v = va~∂a with a = 1, 2, 3 in a Minkowskian chart with metric
tensor η = dt2 − dx2 − dy2 − dz2, the corresponding four-velocity is given by

u =
(1, ~v)

√

1− |~v|2
= γ(1, ~v) with γ :=

1
√

1− |~v|2
≥ 0 .

We see easily that η(u, u) = (u0)
2 − |~u|2 = γ2(1 − |~v|2) ≡ 1 and |~v| < 1 is required. For ~v = 0 the

4-velocity is (1, 0, 0, 0). The length of a timelike 4-vector is coordinate invariant. The time component
u0 = γ of worldlines with |~v| > 0 will appear scaled by a factor γ as compared to worldlines which
correspond to particles at rest relative to some observer, which is known as the Lorentz time dilation of
moving observers.

Co-Metric If a metric (gµν) can be inverted (not degenerated metric), then a co-metric (gνλ) can be
defined on the covectors:

gµνg
νλ = δλ

µ

Example: The Euclidean co-metric in polar coordinates becomes:

(gµν) =





1
1
r2

1
r2 sin2 ϑ





Remark: In Newtonian spacetime (J.Rothleitner [Rot99] has presented an elaborated formulation in
modern differential geometry) the co-metric has the signature (0,+,+,+), thus it is degenerated and
a (four-dimensional) metric does not exist. The explicit specification of an exact 1-form Z, called the
“time-one-form”, in addition to the spacetime co-metric is required to allow the computation of the length
of vectors. The term “timelike” or “spacelike” is defined via Z:

• v ∈ Tp(M) spacelike ⇐⇒ < Z, v >= 0
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• v ∈ Tp(M) timelike ⇐⇒ < Z, v >6= 0

Z defines slices in the spacetime which are connected by spacelike vectors, and any function t : M 7−→ R

with Z = dt may be used as a coordinate function. Such a coordinate function is called the “absolute
time”, which is uniquely defined by Z except for a constant t0 (if t is an absolute time with Z = dt, then
also t̄+ t0 is an absolute time coordinate because Z = dt̄ = dt). The time-one-form describes the concept
of an “ether”, consisting of an absolute time which is identical for all points in space. The four-velocity,
see def. 33, in a Newtonian spacetime is defined as u = q̇/< Z, q̇ >.

Musical Isomorphisms A metric allows to define isomorphic mappings between tangential and cotan-
gential spaces. This is required for identifying vector and covectors, like it is done in Euclidean space or to
formulate operations on cotangential spaces in tangential spaces and vice versa. These mappings appear
as “index lowering” and “index raising” when viewing these operations at the coordinate components.
With respect to the lowering and raising operators of halftones, these maps are called “musical”:

Definition 34 The index lowering ♭ : Tp(M)→ T ∗
p (M) is defined via the identity

< V, u >= g(♭v, u)

In a chart {xµ}:
Vµ = gµνv

ν =: (♭v)µ

Definition 35 The index raising ♯ : T ∗
p (M)→ Tp(M) is defined via the identity

< V, u >= g(V,U)

In a chart {xµ}:
vµ = gµνVν =: (♯V )µ

Remark: In Euclidean space the metric is represented by the unit matrix, thus the components of a
covector and a vector appear numerically identical under the musical isomorphisms and covectors are not
distinguished from vectors in Euclidean geometry.

Application example: By the means of the musical isomorphism, the well-known operation of the
gradient (a tangential vector) of a scalar function is defined, making use of (2.7) and def. 35:

~∇f := ♯df (2.28)

The coordinate expression ♯df = gµνf,ν ~∂µ can be read off easily.

2.1.2 Velocity and Acceleration

Concept of Time

This section contains non-standard concepts which have been inspired by P. Wagner [Wag94].
In Newtonian mechanics, time is an absolute quantity and is like a constant flow at each point of

the universe, uniquely defined for each event. All events that happen at the same time constitute the
“present”. Events which happen at a later time, form the “future”, earlier events the “past”. The notion
of “past”, “future” and “present” is uniquely defined via the time difference of two events.

In relativistic physics, time is a relative quantity which depends on the motion (special relativity)
and/or the location (general relativity). Various coordinate systems with different notions of time may
co-exist. The time difference in one coordinate system (defining a “future” in this coordinate system) is
not sufficient to determine their causal connectivity. What resides in a future relative to one coordinate
system, might be in the past relative to another coordinate system. An “absolute” notion of the term
“future” thus requires a definition which is not based on time coordinates, but on causality among events:

Definition 36 The set of all points of a Riemannian manifold M which can be reached via a timelike
line(def.30) from a point p is called the (absolute) non-present of p, denoted as N(p):

N(p) = {x ∈M |∃q : [0, 1] −→M, q(0) = p, q(1) = x,∀s ∈ [0, 1] : g(q̇(s), q̇(s)) > 0}
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To distinguish between the terms “future” and “past” we need an additional structure on the given space
beyond the metric. We call this the “time orientation”, denoted by ↑ or ↓. Since the metric has signature
(+,−,−,−) the double cone {v ∈ Tp(M) : g(v, v) > 0} consists of two connected components V1, V2 ⊂M .

Definition 37 M is called time-orientable if we can chose one of the half-cones V1, V2 as the “future
cone” in a continuous way, i.e. if we can chose a continuous map

↑: {v : v ∈ Tp(M), g(v, v) > 0} −→ {−1,+1}
such that ↑(−v) = −↑v. We set ↓v = −↑v. For lightlike non-null vectors w we define ↑w by continuity.
For spacelike vectors the time orientation is undefined.

The notion of “time-orientation” is usually neglected when speaking about manifolds, but it is nevertheless
an important property of a physically acceptable spacetime. O’Neill [O’N83], p. 145, defines time-
orientability in a similar way. A lemma proven there tells that a manifold M is time-orientable if and
only if there exists a timelike vector field on M .

The choice of a time orientation ↑ can be interpreted as the choice of the positive or negative square
root when computing the length of a vector from its given square g(v, v). Choosing a negative value as
length is mathematically equivalent, but by convention the positive value is taken. The time orientation
operator makes such an implicit choice explicit. It allows the distinction among the (mathematically
equivalent) future and past:

Definition 38 Let M be a time oriented manifold. A timelike or non-null lightlike vector is called
future(past)-directed iff its time orientation is positive(negative):

v future-directed ⇐⇒ v ∈ Tp(M), g(v, v) ≥ 0, ↑ v > 0

v past-directed ⇐⇒ v ∈ Tp(M), g(v, v) ≥ 0, ↓ v > 0

Definition 39 A metric space (def.11) together with a time orientation is a physical space (M,G, ↑)
or spacetime. The points within a physical space are called events.

Exchanging the time orientation operator maps the future to the past and vice versa. At each point of
Minkowski spacetime actually two sheets of spacetime co-exist like parallel universes with respectively
reversed time orientation. The double sheets of flat Minkowski spacetime never touch. However, the
corresponding sheets of a curved spacetime may touch, e.g. at the event horizon of a static black hole:
here a negatively time oriented asymptotically flat spacetime (approaching Minkowski spacetime far from
the black hole) touches with a positively time orientated asymptotically flat spacetime. Both regions are
outside the event horizon. The opposite direction of time becomes obvious when computing the flow of
time in Schwarzschild coordinates in the “parallel universe”. The Kruskal coordinate diagram (fig. 2.2)
visualizes the reversion of the Schwarzschild time coordinate quite clear: consecutive time slices are
straight lines through the center of the coordinate origin with various inclination angles, whereby 45o

corresponds to the event horizon). Increasing Schwarzschild time in our universe (region I, right of the
Kruskal coordinate origin) corresponds to decreasing Schwarzschild time in the parallel universe (region
I ′, left of the Kruskal coordinate origin). Within the event horizon (region II), both directions coincide,
because time is “inward-directed” there. The time reversal is given by the white hole solution (region
II ′′). The inner region of the white and black hole (white: things may only come out, black: things may
only fall in) are isometric (lines and curves sustain there length under isometry operations) in a metric
space, but not in a physical space (i.e. taking into account the time orientation as well, future-directed
curves become past-directed curves and vice versa).

Interesting things may happen in exotic spacetimes like the very inner regions of a rotating black hole
(the so-called Kerr solution (2.53) of Einstein’s equations): A rotating black hole has two event horizons.
In the innermost region behind the inner event horizon, the “rotational pull” of the spacetime is such
that the tangential base vector for the azimuthal coordinate, ∂ϕ becomes timelike, i.e.

g(∂ϕ, ∂ϕ) = gϕϕ > 0

Now, as ϕ is the azimuthal angle with the periodic property that ϕ + 2π ≡ ϕ, this means that after a
period of proper length 2π (which is a time here, see def.32) along a (timelike!) world line q(s) = ϕ(s) an
astronaut would arrive at exactly the same event in the manifold as where he started! Such a world line
is called a closed timelike line (CTL). If they exist in nature, they would allow time travel. However, it is
not yet known if CTL’s can exist outside of event horizons or if there is always an event horizon separating
“normal” space from regions containing CTL’s (similar to the hypothesis of “cosmic censorship”, which
supposes that any singularity is surrounded by an event horizon and is thus invisible to the outside).
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Figure 2.2: Geodesically complete Schwarzschild spacetime in Kruskal coordinates. Note the reversal
of the Schwarzschild time on the left side, i.e. t < 0 close to the black hole in the parallel universe I ′.
[Ben97] contains a detailed explanation with derivation.

Geodesics

Definition 40 An extremal line is the shortest or longest (i.e. most extreme) connection between two
points. It is determined by the metric.

A curve q(s) is the most extreme connection between two points A = q(s1) and B = q(s2) iff

s2∫

s1

√

|g(q̇(s), q̇(s))| ds = minimum

This minimization principle is similar to the Lagrange formalism within mechanics. Here q(s) is the true
path of a particle iff

s2∫

s1

L(qk(s), q̇k(s)) ds
!
= extr.

From

δ

∫

L(qk(s), q̇k(s)) ds = 0

we get the well-known Euler-Lagrange-equations:

∂L

∂qk
− d

ds

∂L

∂q̇k
= 0 (2.29)
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Now if we take the length of a curve’s tangential vector as the Lagrange function:

L(qk(s), q̇k(s)) =
√

g(q̇(s), q̇(s)) =
√

q̇µq̇νgµν

then its solutions are extremal lines. They are independent from the parameterization of the curves (proof
not shown here). If we take the square of the length of the tangential vectors as Lagrange function:

L(qk(s), q̇k(s)) = g(q̇(s), q̇(s)) = q̇µq̇νgµν (2.30)

then the parameterization of the curve becomes fixed and the solutions are extreme lines which are
parameterized by their affine parameters.

Definition 41 A geodesic curve is an extremal line with its affine parameter.

Geodesics are determined from a metric tensor field via the geodesic equation (2.35).

Deriving the Geodesic Equation The first term of Euler-Lagrange equations (2.29) with the lagrange
function (2.30) becomes:

∂L

∂qα
= q̇µq̇ν ∂gµν

∂xα
= q̇µq̇νgµν,α (2.31)

Derivation of (2.30) by the velocity q̇α of the curve yields:

∂L

∂q̇α
=
∂ (q̇µq̇νgµν)

∂q̇α
= q̇νgµνδ

µ
α + q̇µgµνδ

ν
α = q̇νgαν + q̇µgµα = 2gµαq̇

µ (2.32)

Derivation by the curve parameter leads to the second term of (2.29):

d

ds

∂L

∂q̇α

=
(2.32)

d

ds
(2gµαq̇

µ) = 2

(
d

ds
gµα

)

q̇µ + 2gµα
d

ds
q̇µ =

(2.3)

2

(
∂gµα

∂xν

d

ds
qν

)

q̇µ + 2gµαq̈
µ = 2 (gµα,ν q̇

ν q̇µ + gµαq̈
µ) (2.33)

From this we may read off the equations of geodesics:

0 =
∂L

∂qα
− d

ds

∂L

∂q̇α
= q̇µq̇νgµν,α − 2 (gµα,ν q̇

ν q̇µ + gµαq̈
µ) = −2gµαq̈

µ − 2

(

gµα,ν −
1

2
gµν ,α

)

q̇ν q̇µ

Multiplying by − 1
2g

αλ reveals:

q̈λ +
1

2
gαλ (2gµα,ν −gµν ,α )

︸ ︷︷ ︸

=:Aλ
µν

q̇ν q̇µ = 0

From the abbreviation expression Aλ
µν only the symmetric part contributes:

−q̈λ = Aλ
µν q̇

ν q̇µ = Aλ
νµq̇

µq̇ν = Aλ
νµq̇

ν q̇µ =
1

2

(
Aλ

µν +Aλ
νµ

)

︸ ︷︷ ︸

=:Γλ
µν

q̇ν q̇µ

These are the so-called Christoffel symbols Γλ
µν . They only depend on the metric and its first partial

derivatives:

Γλ
µν :=

1

2
gλα

(
1

2
(2gµα,ν −gµν ,α ) +

1

2
(2gνα,µ−gνµ,α )

)

=
1

2
gλα (gµα,ν +gνα,µ−gµν ,α ) (2.34)

The abbreviated form of the geodesic equation in a chart {xµ} thus can be written as:

q̈λ + Γλ
µν q̇

µq̇ν = 0 (2.35)

Definition 42 A manifold is geodesically complete if it contains all points which can be reached with
a finite parameter by an arbitrary geodesic starting within the manifold.
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In general, it is not possible to cover a geodesically complete manifold with a single chart. E.g. the
outer region of a black hole is not geodesically complete. It is complete regarding spacelike geodesics
(their proper length becomes infinite when touching the event horizon), but not regarding lightlike or
timelike geodesics (which stay finite at the event horizon - an astronaut may cross the event horizon in
a finite amount of proper time, although the Schwarzschild chart is not able to cover the event horizon
itself and a static rescue rope down to the event horizon would have to be infinitely long). The domain
of the so-called Eddington-Finkelstein chart goes beyond the event horizon and covers the interior of a
black hole as well as the outside, but still is not geodesically complete. It does not tell where geodesics
originate which do not come from spatial infinity r = ∞, and they clearly cannot come from the black
hole itself. The geodesically complete extension of the Schwarzschild manifold is only visible in the so-
called Kruskal-Skeresz coordinates; it covers the black hole solution together with the white hole solution
and the parallel universe together with the “home” universe. All these four regions touch at the event
horizon.

The lucky case of finding a single chart for a geodesically complete manifold is not common. E.g. in
the case of the rotating black hole, it is not possible to find a single chart for the geodesically complete
manifold, it can only be covered by multiple charts. For instance, here the singularity at r = 0 is actually
a ring, and there exists a parallel universe at r < 0. There is no way to visualize a region r < 0 in usual
polar coordinates.

Chart Transition Given the Christoffel symbols in a chart {xµ} their representation in another
chart {xµ̄} is given by

Γσ̄
µ̄ν̄ = Γσ

µνα
σ̄
σα

µ
µ̄α

ν
ν̄ + ακ

µ̄,ν̄ α
σ̄
κ , (2.36)

where α are the chart transition matrices as in def. 2.4. The first term in the sum is called the tensorial
part, whereas the existence of the second one makes clear that the Christoffel symbols are not components
of a tensor (the generalization of tensors are called geometrical objects). For instance, all of the Christoffel
symbols may be zero in one chart, Γσ

µν = 0, but non-zero in another chart Γσ̄
µ̄ν̄ 6= 0. For tensor fields,

this cannot happen. If a tensor field is zero in all of its components in one chart, it is zero in all other
charts as well. This property of the Christoffel symbol leads to the following definition:

Definition 43 A chart {xµ} is said to be inertial, if the Christoffel symbols vanish in this chart.

General relativity states that inertial coordinate systems do not necessarily exist. However, at any event
in a spacetime a coordinate system can be found locally such that the Christoffel symbols vanish there.
Such a coordinate system is called locally Minkowskian and corresponds to a freely falling observer. An
infinite number of locally Minkowskian coordinate systems exists, which are all related via the Lorentz
transformation (freely falling observers may have arbitrary velocity less than the speed of light and move
in any direction). The coordinates of a locally Minkowskian chart are called Riemannian normal coor-
dinates. Finding Riemannian normal coordinates is identical to diagonalizing the metric at a particular
event. Having a locally Minkowskian chart means to find a chart such that the first derivatives of the
metric vanish in this chart; this can always be achieved by a proper choice of coordinates. However, the
second derivatives of the metric cannot be made zero by coordinate transformations. Thus the coordinate
system of a freely falling observer will be inertial only in first order, but he will still experience effects
due to the second order derivatives of the metric, which are actually tidal forces of the gravitational field
which cannot be transformed away by proper motion.

Another consequence is that the energy of the gravitational field, which shows up in the second
derivatives of the metric, is not localizable, because any gravitational field appears locally Minkowskian.
The energy of a gravitational field can only be defined via integration over some finite volume, but it is
not possible to define some energy density of the gravitational field like in hydrodynamics.

Note that while the Christoffel objects itself are not tensors, the difference of any two Christoffel
objects yields a tensor, because the non-tensorial parts in the chart transition rules (2.36) cancel. This
is important for the definition of the curvature tensors like the Riemann, Ricci and Weyl tensors, which
are constructed from derivatives and differences of Christoffel objects.

Straight Lines and Connections

The partial derivative of a tensor field is no longer a tensor field. Actually it is not even trivial to
define what the derivation of a tensor field means, because derivation requires to compare elements from
different tangential spaces. We may try to define the derivation of a tensor field V (along a curve q) like
we defined the derivation along a curve, def. 2.2, which resulted in the definition of tangential vectors
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Figure 2.3: What is the “distance” between two (tangential) vectors at different points p and q? We
can only compare vectors (which can be seen as “directions with speed information”) if they originate at
the same point in space (the same point p of a manifold M). Only then (i.e. if both reside in the same
tangential space Tp(M)), we can make use of def. 28 and define the distance as the “dot product” of the
two vectors.

def. 21:

∂qV ≡
dV

ds
:= lim

h→0

V (q(s+ h))− V (q(s))

h

At this point, we have a problem with the pretendedly simple subtraction operation (see fig. 2.3 for
illustration): namely – let us limit ourselves to vector fields for now – V (q(s + h)) ∈ Tq(s+h)(M) and
V (q(s)) ∈ Tq(s)(M) are elements from different spaces and therefore can not be simply compared or
subtracted! Of course, in a given chart {xµ} we may just determine the numerical values of the vector
components and compute the numerical difference, but the resulting number (the partial derivative) then
depends on the choice of the chart. Using another chart {xµ̄} would give another result. Thus we first
need an operation which transports objects from Tq(s+h)(M) into Tq(s)(M) (fig. 2.4):

Figure 2.4: To compare two vectors at different locations in space, we need to transport one to the
location of the other (def. 44). This operation is only trivial if the underlying manifold is flat, Euclidean
space. Think e.g. about a vector field on a sphere, where we are not interested in the direction change
of a vector in the embedding flat space around, but relative to the surface.

Definition 44 Let p0, p ∈M be points in a manifold M and v ∈ T 1(M) a vector field. The tangential
transport τ is a linear map from the tangential space at the point p into the tangential space at point
p0:

τp0
(p,−) : Tp(M) −→ Tp0

(M)

v(p) 7−→ τp0
(p, v(p))

with the property that at the point p0 itself the tangential transport is the identical map, i.e.

τp0
(p0, v(p0)) = v(p0)

The elegant concept of a tangential transport was invented by P. Wagner [Wag94] and is not identical
with the more common concept of parallel transport, but is equivalent in first order. Linearity means
that for λ, µ ∈ R and v, w ∈ Tp(M):

τp0
(p, λ · v(p) + µ · w(p)) = λ · τp0

(p, v(p)) + µ · τp0
(p,w(p))
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Thus we may write in a chart {xµ}:

τp0
(p, vµ(p) ∂µ|p) = vµ(p)τp0

(p, ∂µ|p) =: vµ(p)τν
µ (p0, p) ∂µ|p0

The matrix elements τν
µ are the components of the tangential transport from p to p0 in the chart {xµ}. It

depends on the distance between the points p and p0 (as measured by the curve parameter of an arbitrary
connecting curve, note that we don’t need a metric here) and becomes the identical matrix for p = p0.
We may discover the structure of the coordinate expression τν

µ further if we write the tangential transport
τ of a vector field v : M → Tp(M) along a curve q as a Taylor series for small curve parameters s (i.e.
close to the point q(0)):

τq(0) (q(s), v(q(s))) = vµ(q(s)) ∂µ|q(0) + s · ∂ τq(0) (q(s), v(q(s)))

∂ xµ
· d
ds
qµ(0)+

s2

2
· ∂

2 τq(0) (q(s), v(q(s)))

∂ xµ ∂ xν
· d
ds
qµ(0)

d

ds
qν(0) + · · · =

vµ(q(0)) ∂µ|q(0) + s · vν(q(0))
∂τp0

(q(0), ∂ν(q(0)))

∂ xµ
︸ ︷︷ ︸

=:∇σ
µν∂σ

·q̇µ(0) +
s2

2
· · · =

vµ∂µ + s · vν∇σ
µνq

µ∂σ +
s2

2
. . .

The tangential transport can thus be written in first order as

τq(0)
(
q(s), v(q(s))

)
= vµτν

µ∂ν = vµ
(
δν
µ + s · ∇ν

σµq̇
σ
)

︸ ︷︷ ︸

≈ τν
µ

∂ν , (2.37)

or, in words: we may write the distance-dependent “tangential transport matrix” τ in a linear approxi-
mation as the unit matrix plus the distance times a “transportation matrix increase” for each direction.
The expression ∇ν

σµq̇
σ gives the increase of the transportation matrix in the direction q̇, which can be

written as linear combination of the differences ∇ν
σµ along the coordinate line of xσ. Now we are able to

define the derivative of a vector field:

Definition 45 The change of a vector field v ∈ T 1(M) under the action of a tangential transport τ along
a curve q is called the directional derivative ∇ of the vector field v in the direction of the tangential
vector q̇:

∇q̇v :=
d

ds

[
τq(0) (q(s), v(q(s)))

]

s=0
= lim

s→0

τq(0)
(
q(s), v(q(s))

)
− v(q(0))

s
(2.38)

Now let us inspect the coordinate expression of this operation. (2.38) is of the form

d f(g(x), h(g(x)))

d x
=
∂f(g, h)

∂g

d g(x)

d x
+
∂f(g, h)

∂h

dh(g(x))

d x

therefore it can be written in a chart {xµ} as

∇q̇v :=
d

ds
[τq0

(qs, v(qs))]s=0

=
∂ τq0

(qs, v(qs))

∂ xµ

∣
∣
∣
∣
s=0

d qµ
s

ds

∣
∣
∣
∣
s=0

+
∂ τq0

(qs, v(qs))

∂ v

∣
∣
∣
∣
s=0

d v(qs)

ds

∣
∣
∣
∣
s=0

(2.39)

whereby we know from τp(p,−) ≡ id that

∂ τq0
(qs, v(qs))

∂ v

∣
∣
∣
∣
s=0

=
∂ τq0

(q0, v(q0))

∂ v
=
∂ v(q0)

∂ v
= 1

And with the linearity of the derivation we may write using def. 2.2:

d v(qs)

ds

∣
∣
∣
∣
s=0

=
d (vσ∂σ)

ds

∣
∣
∣
∣
s=0

=
d vσ

ds

∣
∣
∣
∣
s=0

∂σ|s=0 =
∂vσ

∂xµ

dqµ
s

ds

∣
∣
∣
∣
s=0

∂σ = vσ,µ q̇
µ∂σ
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The first term in (2.39) becomes:

∂ τq0
(qs, v(qs)))

∂ xµ

∣
∣
∣
∣
s=0

=
∂ τq0

(qs, v
ν(qs)∂ν)

∂ xµ

∣
∣
∣
∣
s=0

= vν(qs))|s=0

∂ τq0
(qs, ∂ν)

∂ xµ

∣
∣
∣
∣
s=0

= vν(q0)
∂τq0

(q0, ∂ν)

∂xµ

= vν(q0)∇σ
µν(q0)∂σ

Finally by inserting into (2.39) we get the coordinate expression for the directional derivative:

∇q̇v = vν∇σ
µν∂σ q̇

µ + vσ,µ q̇
µ∂σ =

(
vν∇σ

µν + vσ,µ
)
q̇µ∂σ =: vσ

;µq̇
µ∂σ (2.40)

Whereby vσ
;µ := vν∇σ

µν + vσ,µ is called the covariant derivative of the vector field v (written in
components). This derivation procedure involves an external structure, the tangential transport (which
is usually just provided in first order by specification of the Christoffel symbols), but is independent from
a specific coordinate system.

The definition of the covariant derivative can be extended to arbitrary tensor fields T . It always yields
another tensor field ∇T . ∇ is called the connection or connection operator. Note that ∇ itself is not a
tensor. In a chart {xµ} we get along a curve:

∇q̇ q̇ = q̇σ
;µq̇

µ∂σ = (q̇ν∇σ
µν + q̇σ,µ )q̇µ∂σ = q̇ν q̇µ∇σ

µν∂σ + q̈σ∂σ (2.41)

∇σ
µν are the components of the connection in a coordinate representation. These are n3 numbers for

a n-dimensional manifold. The connection coefficients obey the same transformation rule (2.36) as the
Christoffel symbols.

Definition 46 The acceleration of a worldline is the directional derivative of the wordline’s four-
velocity (def. 33) along the worldline, i.e.:

a := ∇uu = ∇q̇ q̇

whereby the last expression is valid for curves which are parameterized by their arc length.

The norm of the acceleration |a| ≡ g(a, a) = 0 is zero, i.e. the acceleration is a spacelike vector and it is
orthogonal to the four-velocity, i.e. g(a, u) = 0 (see e.g. (6.2) in Misner,Thorne and Wheeler [MTW73]).

Note that this definition supports the physical principle of covariance, def. 23. An example is Newton’s
law F = m · a: some “force” is a physical action which is independent from an observer. Clearly, the
force which might disrupt an object must not depend on any observers viewing this event, especially
disregarding their motion. “Force” is an absolute quantity, like the mass of an object is independent from
its observers (we view Newton’s law in a non-relativistic context here!). Thus, consequently, also the
acceleration is a absolute quantity. However, the acceleration as measured by some observer is not the
second derivative of a curve along its parameter q̈, as it is frequently believed and wrongly taught. The
special case where a = q̈ is only true for observers who perform their measurements in a coordinate system
where the connection components ∇σ

µν vanish, according to (2.41). These observers are called inertial.
Other observers will need to “know” their connection components to correctly determine the acceleration
and thus the true (physical, observer-independent) force. If they fail to do so and misleadingly interpret
q̈ as the object’s acceleration, then they will find components of the “force” which are not due to physical
forces, but only due to the observer’s measurement method. This are the so-called virtual forces like
the coriolis “force” and the centrifugal “force”. They actually are the components of the connection
coefficients in a rotating coordinate system, being interpreted as part of the left side of Newton’s law
instead of the right side. A detailed calculation demonstrating the connection coefficients in a rotating
coordinate system is given in [Rot99], pp.44.

It is an often heard misconception (or, more diplomatic, “alternative interpretation”) that “the laws
of nature appear the same to all observers, as long as they are not accelerating” (example cited from Betts
[Bet98], which was emended in the subsequent article by Weiskopf [DW00]) and sometimes, even worse,
that the theory of special relativity cannot handle acceleration. This is simply not true. The standard
book for general relativity “Gravitation” by Misner, Thorne, Wheeler [MTW73] even dedicates its entire
chapter six to accelerated observers in special relativity. The misconception arises when identifying
the term “acceleration” with “second time derivative”, which introduces coordinate-dependence by this
assumption. However, if the coordinate-free definition of acceleration is employed, we can simply drop
the accentuation of a special group of observers and state the theorem as “the laws of nature appear the
same to all observers”.
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Example: Acceleration in a rotating coordinate frame. Instead of presenting a detailed
computation, we give a short alternative derivation using more familiar concepts from Euclidean vector
space calculus. Assume we know the path of some object in some inertial system, i.e. ~r(t) : R → R

3 is
known. We may split this vector into its norm and unit direction vector

~r = |r| · ~er

and intend to compute the acceleration ~̈r along this curve. The velocity as the first derivative becomes
(writing r = |r|):

~̇r = ṙ ~er
︸︷︷︸

~vr

+r ~̇er
︸︷︷︸

=:~ω×~er

= ṙ~er + r (~ω × ~er)

We model the change of the tangential velocity an angular velocity vector ~ω around the coordinate origin.
Now the second derivative becomes:

~̈r = r̈ ~er + ṙ ~̇er
︸︷︷︸

~ω×~er

+ ṙ (~ω × ~er) + r
(

~̇ω × ~er

)

+ r(~ω × ~̇er
︸︷︷︸

~ω×~er

) =

r̈ ~er + 2ṙ~ω × ~er + r~̇ω × ~er + rω2~er ≡ r̈ ~er + 2~ω × ~vr + ~̇ω × ~r + ω2~r

Now for an observer who is rotating around the coordinate origin with ~̇ω = 0 the acceleration is the
second derivative of the radial distance plus some additional terms, which are known as the coriolis and
the centrifugal acceleration. Any physical forces on some mass m couple with the absolute acceleration
~̈r via Newton’s law m~̈r = ~F . If the rotating observer unknowingly interprets the second derivative of
his coordinate change r̈ ~er as “the acceleration”, he will find the coriolis and centrifugal terms as some
spooky forces without physical cause, because a physical force F will not couple on mr̈ ~er 6= ~F . Instead,
the second derivative of his coordinate location r̈ is determined by mr̈ ~er = ~F −m2~ω×~vr−mω2~r, hereby
interpreting parts of the acceleration (the expressions involving ~ω are actually the components of the
connection in a rotating frame) as force.

Newton also stated that an object without (physical!) force acting on it will move on a straight line:

Definition 47 A line is straight if the acceleration is all zero along its curves, i.e.

q straight ⇐⇒ ∇q̇(s)q̇(s) = 0 ∀s

If we compare this definition with the geodesic equation (2.35) we see, that a connection may also be used
to define geodesics by setting the connection coefficients ∇σ

µν = Γσ
µν . In this case, the shortest/longest

lines (geodesics) are also straight lines. If Christoffel symbols exist, they induce a connection, which is
called the Levi-Civita-connection (see fig. 2.5). However, this requires that the underlying metric field

Figure 2.5: The tangential transport may be constructed by transporting tangential vectors along
geodesics (e.g. the shortest connecting line on a surface). This special tangential transport is called
the Levi-Civita Connection.

is invertible (see (2.34) ) - which is, for instance, not the case in the Newtonian spacetime [Rot99]. Here
the connection needs to be chosen independently from the metric with the constraint to be compatible,
i.e. ∇g = 0. This choice is similar to the choice of a time 1-form, i.e. is the introduction of an
ether. Nevertheless, in special and general relativity the metric is non-degenerated and we may use the
Christoffel symbols as a connection.
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Remark: A straight line will no longer appear as a straight line for non-inertial observers, who
interprets “straight” as a linear coordinate expression of the form qµ(s) = qµ(0) + sq̇µ, the solution of
q̈µ = 0. But still, they are physically straight lines, even if some observation reveals a “curve”.

Now general relativity questions the existence of inertial observers. The concept of inertial observers
is troublesome, because a non-inertial observer needs to know his relation to an inertial one, but so how
can any observer know that he is inertial if any one needs an “anchor”? What is the “root anchor”? Thus
general relativity abandons the concept of inertial observers completely and states that the connection
is the Levi-Civita connection of the underlying spacetime metric, which is no longer flat and can be
measured. The spacetime metric is determined by the mass distribution in space and time, objects
moving in space and time do not interact with other massive objects through spooky forces (like in
newtons’ theory of gravitation), but they feel the geometry of spacetime and move along geodesics.
Consequently, the orbit of a satellite around earth or of planets around the sun is a straight line in the
notion of general relativity and any object in free fall is unaccelerated. For instance, a particle orbiting
earth is unaccelerated, whereas an object resting on the surface of earth is accelerated (upwards, like in
a rocket which is just hovering at constant height).

An interesting aspect is that the simple theorem from special relativistic electrodynamics “an ac-
celerated charge emits electromagnetic radiation” is no longer valid in the general relativistic context:
an orbiting, but unaccelerated electrically charged particle will emit electromagnetic radiation, while a
charged particle sitting at rest at the surface of earth does not emit electromagnetic radiation – where
should the energy of the electromagnetic radiation come from in this static, time-independent situation?
In contrast, the charged particle orbiting the electrically neutral earth would loose energy via its elec-
tromagnetic radiation and thus follow another trajectory than a neutral particle (i.e. it will obey some
acceleration due to the back-reaction of the emitted radiation). Einstein’s principle of equivalence (all
masses behave identical in a gravitational field) is thus only valid “locally” or for electrically neutral
masses, but violated once electrical charges come into account (as confirmed by J. Ehlers [WE]). This
issue is rarely heard in recent presentations, but was discussed by Bondy and Gold [BG55], and recently
mentioned as one of the alleged paradoxes in relativity also by W. Rindler [Rin93].

Riemann Curvature Tensor and Einstein Equation

When computing the second covariant derivative, we find that in contrast to the second partial derivative
this operation does no longer commute. This difference in the commutation of the second covariant
derivative is expressed by a tensor, known as the Riemann curvature tensor R:

K(u, v)w =
[(
wν

;µ;σ − wν
;σ;µ

)
+ wν

;κ

(
∇κ

σµ −∇κ
µσ

)]
vµuσ∂ν

The Riemann curvature tensor is defined coordinate-free via the relationship:

K(u, v)w := ∇u∇vw −∇v∇uw −∇[u,v]w (2.42)

Its coordinate expression involves differences and derivatives of the Christoffel symbols:

Kκ
µλβ = ∇κ

λµ,β −∇κ
βµ,λ +∇ρ

λµ∇κ
βρ −∇ρ

βµ∇κ
λρ

A detailed derivation of the Riemann tensor based on the notion of the tangential transport can be
found in the diploma thesis “Voids” [Ben97]. The Riemann curvature tensor obeys certain symmetry and
anti-symmetry relationships, which leads to just 1

12n
2(n2 − 1) independent components in n dimensions

instead of n4 (i.e. 20 independent components on a four-dimensional spacetime). The only non-vanishing
contractions define the symmetric Ricci tensor:

Rµν := Kκ
µκν

In the case of a Levi-Civita connection Γ = ∇ the Ricci-tensor R(v, v) with v ∈ TP (M) computes the
sum of the Gaussian curvatures K of n− 1 mutually orthogonal surfaces that are span by geodesics that
contain v:

R(v, v) = g(v, v)
n−1∑

i=1

Ki

This interpretation is due to Ricci himself, as pointed out e.g. by Eisenhart [Eis49], p.113. Finally,
the Einstein field equation relates the Ricci tensor to the momentum tensor Tµν which describes the
distribution of matter in space:

Rµν −
1

2
gµν (RσρR

σρ) = Tµν (2.43)

and is the central equation of general relativity. For vacuum solutions, like black holes, the Ricci tensor
has to vanish: R = 0.
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2.1.3 Fiber, Vector, and Tangential Bundles

Definition 48 The fibers of a function f : X −→ Y are the pre-images or inverse images of the
points y ∈ Y , i.e. the sets of all elements x ∈ X with f(x) = y:

f−1(y) = {x ∈ X | f(x) = y}

is a fiber of f (at the point y).

A fiber can also be the empty set. The union set of all fibers of a function is called the total space.

Figure 2.6: The fibers of the function f : R
2 −→ R : f(x, y) 7−→ x2 + y2 are concentric circles (f > 0),

the origin (f = 0) or empty sets (f < 0).

Definition 49 The projection map pr1 is a function that maps each element of a product space to the
element of the first space:

pr1 : X × Y −→ X

(x, y) 7−→ x

Definition 50 Let E,B be topological spaces and f : E −→ B a continuous map. (E,B, f) is called a
(fiber) bundle if there exists a space F such that the union of fibers of a neighborhood Ub ⊂ B of each
point b ∈ B are homeomorphic to Ub × F such that the projection pr1 of Ub × F is Ub again (see fig. 2.7
for illustration):

(E,B, f : E → B) bundle ⇐⇒ ∃F : ∀b ∈ B : ∃Ub : f−1 (Ub)
hom≃ Ub × F

and pr1(Ub × F ) = Ub

E is called the total space E, B is called the base space and f : E −→ B the projection map.

The space F is called the fiber type2 of the bundle or simply the fiber of the bundle. In other words, the
total space can be written locally as a product space of the base space with some space F . The notation
F(B) = (E,B, f) will be used to denote a fiber bundle over the base space B. It is also said that the
space F fibers over the base space B.

2 Note that the fibers of the bundle projection f : E → B is a subset of the total space. The term “fiber” occurs in
two different meanings: as the “fiber of the projection map” and as “fiber space of the bundle”. The first term refers to a
subset of the total space (which includes the base space), the last term refers to the fiber space F (which does not include
the base space).
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(a) A fiber bundle with appropriate homeomorphism. (b) A homeomorphism into Ub ×F , which does not pre-
serve the projection, thus not revealing a fiber bundle.

Figure 2.7: The constraints on the fiber homeomorphism: the projections of the fibers of a point must
reveal the same point (in the base space). The right example shows a space that is locally homeomorphic
to Ub × F , but is not a fiber bundle over Ub, whereas the left example is a fiber bundle.

An important case is the tangent bundle:

Definition 51 The union of all tangent spaces Tp(M) on a manifold M together with the manifold is
called the tangent bundle T (M):

T (M) := {(p, v) : p ∈M,v ∈ Tp(M)} (2.44)

Every differentiable manifold possesses a tangent bundle T (M). The dimension of T (M) is twice the
dimension of the underlying manifold M , its elements are points plus tangential vectors. The mapping
π : T (M) → M is called a natural projection. The inverse image of a point p ∈ M is the tangent space
Tp(M). Tp(M) is the fiber of the tangent bundle over the point p.

Definition 52 If a fiber bundle over a space B with fiber F can be written as B × F globally, then it is
called a trivial bundle (B × F,B, pr1).

Examples for non-trivial fiber bundles are the Möbius strip or the Hopf bundle that consists of total
space S

3 with base space S
2 and fiber S

1 (a nice discussion can by found on J. Baez’ web site [Bae99]).
If a manifold can be written as a product space, then its tangential bundle can be written as product of
the respective tangential bundles:

T (X × Y ) = T (X)× T (Y )

It follows, that if a manifold M is a trivial bundle, i.e. M = B × F , then its tangential bundle is trivial
as well:

M trivial ⇒ T (M) trivial ,

also the negation is true:

T (M) non-trivial ⇒ M non-trivial .

However, a non-trivial manifold may still posses a trivial tangential bundle:

M non-trivial 6⇒ T (M) non-trivial .

For various points b1, b2 ∈ B their neighborhoods Ub1 , Ub2 overlap, i.e. Ub1 ∩ Ub2 6= ∅ (strictly speaking:
such neighborhoods can be found that...). It is interesting to investigate how the fibers of both point
neighborhoods are related in the overlap. In general this relationship is a diffeomorphism (a differentiable
homeomorphism) on F , written Diff (F ), but in certain cases these diffeomorphisms can be reduced to
a special group structure. A fiber bundle with a group structure G ⊂ Diff (F ) is called a G-bundle. For
instance, the fibers of a tangential bundle are the tangential spaces, which are related via coordinate
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transformation matrices (2.4). The coordinate transformation matrices are members of the group of
general linear invertible functions Gln, thus the tangential bundle is a Gln-bundle:

T (U1 ∩ U2) −−−−→
{xµ}

U1 ∩ U2 × R
n

∥
∥
∥



yαµ

µ̄∈Gln

T (U1 ∩ U2) −−−−→
{xµ̄}

U1 ∩ U2 × R
n

(2.45)

An interesting question is whether the structure group of a tangential bundle can be reduced further to
the group of special linear invertible functions Sln := {A ∈ Gln : det A = 1}, i.e. can the entire manifold
be described by charts whose respective transformation matrices (2.4) have determinant one? In general,
this is not possible. Manifolds whose tangential bundle has the structure group Sln are called orientable.

Definition 53 If the fiber of a bundle is a vector space and its structure group is Gln, then it is called
a vector bundle.

Examples:

• The tangential bundle of a manifold is a vector bundle.

• The infinite Möbius strip and the infinite cylinder S
1×R are vector bundles, because the fiber R is

a vector space.

• The Hopf bundle is not a vector bundle, because the fiber S
1 is not a vector space.

Any tensor is an element of a vector space, thus all tensor fields can be described via vector bundles. In
contrast, the Christoffel symbols are not tensors and thus need to be described via the more general fiber
bundles.

Definition 54 A map σ : B → E is called a section of a fiber bundle (E,B, p : E → B) if p ◦ σ : B →
B = id.

A section gives an element of the fiber over every point in B.

Example: A vector field is a section of the tangent bundle. The zero section of a vector bundle is the
submanifold of the bundle that consists of all the zero vectors. In general, a vector bundle of rank (i, j)
is spanned locally by i+ j independent sections.

A “generalization” (with limitations) of fiber bundles are sheaves. They are also subject of research for
data models and will thus be shortly described here. According to Kodairo’s book [Kod86] a fiber sheave
is defined as follows:

Definition 55 A topological space E is called a sheaf over a space B if

I.) a local homeomorphism f : E −→ B exists,

II.) ∀b ∈ B the fiber f−1(b) is a vector space on R
n, whereby n ∈ N or n =∞ (in most cases),

III.) for two numbers c1, c2 ∈ R and p, q ∈ E the linear combination c1p+ c2q with f(p) = f(q) depends
continuously on p, q.

A sheaf can be imagined as a fiber space F that can change at each point of the base space B, but in
general a sheaf is not a fiber bundle. There is some overlap among both concepts when the fiber is a
discrete set with the discrete topology (i.e. the topology is the full power set, see p.10). The fibers of a
sheaf are called stalks.

Example:

• Let f−1(p) be the set of equivalence classes of functions on p; two functions f, g are equivalent on
a point p if there exists a neighborhood Up on p such that ∀x ∈ Up : f(x) = g(x).
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2.2 Modeling Discretized Manifolds

2.2.1 Vertices, Cells and Complexes

For computational purposes, a topological space is modeled by a finite set of points. These points
naturally carry a discrete topology (the topology constructed by the full power set, see example 4 on p.10
for definition) by themselves, but one usually considers embeddings in a space that is homeomorphic to
Euclidean space to define various structures describing their relationships. Based on the definitions of a
metric space, def. 11, and k-balls, def. 13 the definition of a cell is as follows:

Definition 56 A subset c ⊂ X of a Hausdorff space X (def. 15) is a k-cell if it is homeomorphic to an
open k-dimensional ball (def. 13) in R

n.

The dimension of the cell is k. 0-cells are called vertices, 1-cells are edges, 2-cells are faces or polygons,
3-cells are polyhedra. An n-cell within an n-dimensional space is just called a “cell”. (n − 1)-cells are
sometimes called “facets” and (n− 2)-cells are known as “ridges”. For k-cells of arbitrary dimension, we
may define incidence and adjacency relationships

Definition 57 Two cells c1, c2 are incident if c1 ⊆ ∂c2, where ∂c2 denotes the border of the cell c2.

Two cells of the same dimension can never be incident because dim(c1) 6= dim(c2) for two incident cells
c1, c2. c1 is a side of c2 if dim(c1) < dim(c2), which may be written as c1 < c2. The special case
dim(c1) = dim(c2)− 1 may be denoted by c1 ≺ c2.

Definition 58 Two k−cells c1, c2 with k > 0 are called adjacent if they have a common side, i.e.

cell c1, c2 adjacent ⇐⇒ ∃ cell f : f < c1, f < c2 .

For k = 0 two 0-cells (i.e. vertices) v1, v2 are said to be adjacent if there exists a 1-cell (edge) e which
contains both, i.e. v1 < e and v2 < e.

Incidence relationships form an incidence graph. A path within an incidence graph is a cell-tuple:

Definition 59 A cell-tuple C within an n-dimensional Hausdorff space is an ordered sequence of k-cells
(cn, cn−1, . . . , c1, c0) of decreasing dimensions such that ∀0 < i ≤ n : ci−1 ≺ ci.

These relationships allow to determine topological neighborhoods: Adjacent cells are called neighbors.
The set of all k + 1 cells which are incident to a k-cell forms a neighborhood of the k-cell. The cells of a
Hausdorff space X constitute a topological base, leading to the following definition:

Definition 60 A (“closure-finite, weak-topology”) CW-complex C, also called a decomposition of a
Hausdorff space X, is a hierarchical system of spaces X(−1) ⊆ X(0) ⊆ X(1) ⊆ · · · ⊆ X(n), constructed by
pairwise disjoint open cells c ⊂ X with the Hausdorff topology

⋃

c∈C c, such that X(n) is obtained from

X(n−1) by attaching adjacent n-cells to each (n− 1)-cell and X(−1) = ∅.

The respective subspaces X(n) are called the n-skeletons of X. A CW-complex can be understood as a
set of cells which is glued together at their subcells. It generalizes the concept of a graph by adding cells
of dimension greater than 1.

Up to now, the definition of a cell was just based on a homeomorphism of the underlying space X
and R

n. Note that a cell does not need to be “straight”, such that e.g. a 2-cell may be constructed from
a single vertex and an edge connecting the vertex to itself, as e.g. illustrated by J.Hart [Har99]. Another
approach toward the definition of cells is more restrictively based on isometry to Euclidean space, defining
the notion of “convexity” first:

Definition 61 A subset K of the Euclidean space R
n is convex, if for any two points p, q the connection

line is contained within K.

E.g. each half space of R
n is convex. The intersection of convex sets is convex again. Any subset S of

R
n is a subset of a convex set of R

n. The intersection
⋂
Kn of all convex sets Kn ⊆ R

n which contain
S ⊆ Kn is called the convex hull of S. Based on the notion of convexity, simplices are defined:

Definition 62 The convex hull of a set of k + 1 points p0, p1, . . . , pk within a Euclidean space of n
dimensions with k ≤ n, whereby these k+ 1 points are not contained within a k-dimensional subspace, is
called a simplex of dimension k or k-simplex.
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The points p0, p1, . . . , pk are called the vertices of a k-simplex, which is consistent with the former
definition of a 0-cell as vertex. A CW-complex built by simplices of an Euclidean space is a called a
simplicial complex. The dimension of a simplicial complex is defined as the maximum dimension of
its simplices: dim(C) := max{dim(S) : S ∈ C.

Definition 63 A topological space is triangulable if it is homeomorphic to a simplicial complex.

Such a topological space is also called a polyeder. The decomposition of a topological space into a
simplicial complex is called a triangulation.

2.2.2 Butler’s Vector Bundle Approach

The proper abstractions for scientific data are known.
We just have to use them. David Butler, 1992 [BB92].

When dealing with the visualization of discretized manifolds, one encounters many different implemen-
tations. The desire to make use of common properties is obvious. This task of finding a generalization
scheme to handle all these branches within the same framework was tackled by Butler and Pendley
[BP89] in an inspiring approach: They proposed to use the abstractions provided by the concept of a
vector bundle for deducting of a class hierarchy. Their recipe was to follow the construction of manifolds
via repeated aggregation of simpler objects to form a layered structure.

At the lowest level, both the base and fiber are point sets, just collections of points X. For the next
layer, the notion of neighborhoods is added to obtain a topological space T := (X, T ) like in def. 1.
Then the notion of coordinates and differentiability is added to get a manifold M := (T, {{xµ}}), like in
def. 19. The fiber of interest here is a vector space, which can be considered as a manifold again, but
with an additional layer of structure, i.e. the structure of linear algebra in the case considered here. The
next layer then aggregates the base space B and the fiber F into a bundle (B,F ). Finally the bundle is
aggregated with a map, which allows to specify values in each fiber to yield a section.

The layer concept as presented in [BP89] is demonstrated in the following diagram:

Section

Map

x



Fiber F −−−−→ Bundle ←−−−− Base B
x

 Product

x



Vector Space
x

 Linear Algebra

x



Manifold Manifold
x

{xµ} Coordinates

x

{xµ}

Topological Space Topological Space
x

T Neighborhoods

x

T

Point Set Point Set

(2.46)

It is limited to trivial bundles. Nontrivial bundles like the Möbius strip would require additional structures
which allow to describe some “twisting”. A non-trivial fiber bundle is no longer a cartesian product of
base and fiber space globally, but just locally. Butler only considered trivial fiber bundles as relevant for
visualization purposes.

Operations on the vector bundle data model were categorized into the three categories of constructor,
mapping and section operations. These constructors are:

1. Base constructors: operations which deal with the structure of the base space

2. Fiber constructors: operations that specify the structure of the fiber

3. Bundle constructors: operations which glue base and fiber together

4. Section constructors: operations that deal with the values of a section
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Mappings are used to create objects from existing ones. Example mappings are:

1. Bundle restriction: the base space is changed (decreased/increased) while the fiber is kept constant.

2. Subbundle: the base space is kept constant, but the fiber changes (i.e. parts of the fiber are removed
or the fiber is extended)

3. Boolean operations: similar to the methods of constructive solid geometry, such mappings create
union, intersection or difference sets of the point sets of two underlying base spaces. The respective
fibers are available in the result.

4. Slicing: a certain kind of bundle restriction, where the base space is reduced by one dimension.

5. Stacking: the inverse of slicing, where a family of lower-dimensional bundles is composed into an
higher-dimensional one.

6. Component projection: reducing the dimension of the fiber by extracting a single component, e.g.
one of three from a 3D vector field.

7. Component direct product: a bundle formed by taking the direct product of the fibers of two
bundles which are given over the same base; it can be used as the inverse operation of a component
projection.

Section operations involve all properties of a section. Examples are:

1. Approximation: interpolating or smoothing a section

2. Linear algebra: multiplying sections by a constant, adding or subtracting two sections defined on
the same bundle

3. Calculus: integrating or differentiating a section.

Finally, a classification scheme for scientific data was derived from the vector bundle model. It is the
triple (db, df ,m), where db is the dimension of the base space, df the dimension of the fiber and m the
multiplicity. E.g. a “component projection” of a three-dimensional vector field given on a plane would be
an operation (db = 2, df = 3,m = 1) 7→ (db = 2, df = 1,m = 3) in this scheme of vector bundle sections.

Implementation

In the succeeding paper Butler and Bryson gave [BB92] a prototype implementation in the Eiffel program-
ming language. It demonstrated how to construct a class hierarchy and added the concept of multiple
charts on a manifold and its fiber space. An application example, the computation of streamlines of a
vector field was given to demonstrate the applicability and simplicity of the data model for visualization
purposes.

The implementation from the paper is shown here as an experimental translation into C++ . Due to
the different abstraction capabilities in the languages Eiffel and C++ , it cannot be an exact translation,
but the code fragments are tried to be as close to the spirit of the Eiffel source as possible. Hereby
efficiency and other implementation aspects have been neglected, as only the intention of the code shall
be shown. The code by itself is not meant to be fully syntactically correct. The reader is assumed to be
familiar with conventional C++ ; no template techniques are used, but the definition of abstract classes
via pure virtual functions is a central functionality.

The class hierarchy starts with the definition of a point set X, which is modeled as a finite set of yet
unspecified elements, such that only the number of elements (with consecutive indexing) is specified:

struct PointSet
{

int count;
};

The original code also included an iterator class for the point set which is omitted here. A topological
space T := (X, T ), def. 2, is a point set with neighborhood information:

struct TopologicalSpace : PointSet
{

int [] neighborhood(int i ) = 0;
};
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The neighborhood information assigns a set of points to a given point. A differentiable manifold (def. 19)
M := (T, {xµ}) is a topological space with coordinate patches (“charts”, def. 17) and coordinate transfor-
mations (coordinate transition rules). A Chart object is formulated as an object that allows to determine
the coordinate representation of a point on a manifold, together with the inverse mapping and a range
determination:

struct Chart
{

// coordinates of point p
virtual float [] coords( int p) = 0;
// returns point with coordinates r
virtual int coordinv(float r []) = 0;
// returns true if coordinates are in the range of the chart
virtual bool in range (float r []) = 0;
// index of adjoining chart if in range () has returned false
int adjoining ;

};

The “Transition” object (a similar implementation will be shown in 3.2.3) allows to evaluate the coordi-
nate transition function {xµ̄} ◦ {xµ}−1 at a certain point:

struct Transition
{

Chart ∗domain, ∗range;
// returns coordinates in chart ‘range’ corresponding
// to coordinates r in chart ‘domain’, i .e.
virtual float [] value(float r []) = 0;

};

The Manifold object then is a topological space with a set of charts:

struct Manifold : TopologicalSpace
{

int dimension;
int ncharts ;
// return the nth chart {xµ}
virtual Chart chart( int which) = 0;
// return the coordinate transition functions {xµ̄} → {xµ}−1

virtual Transition transition ( int from, int to) = 0;
};

Note that the Chart and Transition object mentioned above are bound to a manifold object. They
would ideally be formulated as nested classes, but this implementation enhancement is omitted here.

A vector bundle F(B) = (E,B, f) has a total space E, a base space B, a projection function f ,
coordinate patches and transition functions.

struct VectorBundle
{

int dim base, dim fiber , dim total , dim bundle;
Manifold∗base;
int ncharts ;
virtual VecChart chart( int which) = 0;
virtual VecTransition transition ( int from, int to) = 0;

};

The classes VecChart and VecTransition are similar to the definition of Chart and Transition on a
manifold, but their return values are designated for the vector space components only, i.e. they return the
representation of a vector field in a certain chart (2.3) and the transformation matrix def. 2.4. The section
class finally delivers the field values for each chart and offers the vector space operations of addition and
scalar multiplication:

struct VectorBundleSection
{

// The base space, as obtained from the bundle
Manifold∗base;
// The bundle to which this section belongs
VectorBundle∗range;
// Returns the data values of the current field in the given chart .



42 CHAPTER 2. THEORETICAL BACKGROUND

virtual VecChart chart( int which) = 0;
// Multiplies the section by a scalar function
VectorBundleSection scaleby (float scalar ( int) );
// Adds the current section to another one and returns the result
VectorBundleSection scaleby (VectorBundleSection&other);

};

As an example of a neighborhood implementation, some neighborhood iterator may compute a point’s
neighborhood from multidimensional indices within a regular block of data, whereby the index by itself is
just a linear offset. Multiple blocks are handled by covering each block by its own chart. The computation
of a streamline of a vector field is demonstrated in the following code example; hereby the second vector
bundle section P carries the “physical coordinates” or a grid point, whereby the multidimensional indices
are used as “computational coordinates”, as they are returned by the manifold’s chart functions:

void streamline (VectorBundleSection∗V, VectorBundleSection∗P)
{
int c=1;
Manifold Base = VectorBundleSection−>base;

r1 = Base−>chart(c)−>coord(p1);
v1 = V−>chart(c)−>coord(p1);
r2 = r1 + dt ∗ v1;

while(c>0)
{

if (Base−>chart(c).in range(r2) )
{

p2 = Base−>chart(c).coordinv(r2);
x1 = P−>chart(c).coord(p1);
x2 = P−>chart(c).coord(p2);
draw line (x1,x2);
p1 = p2;
r1 = Base−>chart(c)−>coord(p1);
v1 = Base−>chart(c)−>coord(p1);
r2 = r1 + dt ∗ v1;

}
else

{
cadj = Base−>chart(c).adjoining;
v1 = V−>transition(c, cadj). value(r1 , v1);
r1 = Base−>transition(c, cadj). value(r1 );
r2 = r1 + dt ∗ v1;
c = cadj;

}
}

}

The concept is to cover a manifold, which cannot be described with a single chart (e.g. due to some
coordinate singularities), with a number of overlapping coordinate patches (i.e. an atlas), such that com-
puting integral curves and similar quantities is possible on the entire manifold by choosing an appropriate
chart at each point.

Critics

Although Butler’s approach was path-leading, it does not handle certain requirements that arise in
practical usage. Especially, there is no concept of cells and skeletons on a discretized manifold. The use
of cells instead of vertices is of particular importance when interpolating data on an arbitrary location
in coordinate space. In the context of general relativistic tensor field visualization, it is moreover of
central importance to distinguish among covariant and contravariant tensors (lower and upper indices).
Christoffel symbols, which are not tensors, must be distinguishable from tensorial objects. In other words,
the three-dimensional classification scheme (db, df ,m) with db the dimension of the base space, df the
dimension of the fiber space and m the multiplicity is not sufficient to describe all properties of the fiber.
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2.2.3 Numerical Relativity

3+1 Decomposition

While the Einstein equation (2.43) nicely describes a complete spacetime at once, this equation is not
appropriate in its general form for numerical computations. Here, the four-dimensional field equations
are often split into spatial and temporal components, which is known as the 3+1 formalism: We assume
that a spacetime (M, g, ↑) admits a slicing into spacelike subspaces Σ, i.e. there is a diffeomorphism
φ : M → Σ × I with I ⊂ R such that the manifolds Σt = φ−1(Σ × {t}) are spacelike and the curves
φ−1({x}× I) are timelike (see Straumann [Str96] for a detailed discussion). These timelike curves define
a vector field ∂t, which can be decomposed into normal and parallel components relative to the slicing
~∂t = α~n+ ~β. ~n is a unit normal vector on Σ and ~β is tangent to the slices Σt; it is called the shift vector
field. α is called the lapse function.

A coordinate system {xi} on Σ induces natural coordinates {t, xi} on M . In these coordinates the
Einstein equations become a system of coupled differential equations, a first system describing some
constraints on the three-dimensional space:

R+ tr2K −KabKab = 16π̺
(
Kab − γabtrK

)

;b
= 8πpa ,

and another system the evolution of the space quantities in time:

gab,t = −2αKab + βb;a + βa;b

Kab,t = −α;b;a + α (Rab − 2KacK
c
b +KabtrK) + βcKab;c +Kacβ

c
;b +Kcbβ

b
;a .

The quantities and operations will not be explained here, a review can be found e.g. in Bruegmann [Bru00,
BMSW98]. The four-dimensional metric g becomes

ds2 =
(
α2 − βiβ

i
)
dt2 − 2βidx

idt − γijdx
idxj = α2dt2 − γij(dx

i + βidt)(dxj + βjdt) (2.47)

or alternatively in matrix notation

(gµνdx
µ dxν) =

(
α2 − βiγijβ

j −βi

−βi −γij

)

. (2.48)

In numerical relativity [AGL+99, Bru00, ABB+01], α, β and γ are the primary computational quantities.
Hereby γ is given as a set of initial data at some time t = const. (computing these initial data is a huge
task by itself) and evolved via some clever choice of α and β. Both functions α and β are free to choose,
they are not determined by physical means but may severely impact the stability and precision of a
numerical evolution. A good choice is one of the recipes for a numerically stable evolution. The spatial
metric γ needs to be provided for some initial time and is then evolved with Einstein’s equations of the
gravitational field.

A crucial problem is the difficulty of grid stretching, when the metric distance as measured with the
numerical metric (2.47) between neighboring points on a given grid becomes too large or even infinite.
E.g. the spatial distance to the event horizon is infinite in Schwarzschild coordinates – it is thus not a
good idea to use Schwarzschild coordinate slicing for numerical relativity.

An important issue when developing new evolution schemes and coordinate slicings is thus the de-
tection of grid stretching. Where does it occur and in what direction? A direction visualization of the
metric tensor field, as it is developed in this thesis, is thus of significant importance. If the shift vector
field is given in its covariant form βidx

i, computing |β| for visualization purposes requires calculating the
contravariant form via the inverse of the spatial metric, i.e. βi = βjγ

ij . In practice it is preferable to avoid
matrix inversions and use a Gaussian elimination algorithm for solving linear equation systems of the
form Ax = b ⇒ x, which leads to faster and numerically stabler results when solving γijβ

i = βj ⇒ βj .
Nevertheless the distinction between βidx

i and βi∂i is crucial and must be supported by a suitable data
model.

Four-dimensional formulation of Maxwell equations

The 3+1 decomposition of Einstein’s equation is similar to the Maxwell equations for electrodynamics.
In its classical form, these equations are

div ~B = 0 rot ~E − ∂ ~B
∂t = 0

div ~E = ǫ0̺ rot ~B + ∂ ~E
∂t = −µ0

~j
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It was the great achievement of Maxwell to find a unified theory for electricity (denoted by the electrical

vector field ~E) and magnetism (expressed by the magnetic vector field ~B). Each of these equations has
a certain physical meaning. E.g. the first equation claims that there are no magnetic monopoles and the
second one tells that a time-dependent magnetic field causes an electric field.

However, while usually ~E and ~B are treated as vector fields, they are not really vector fields. Actually
the Maxwell equations are a 3+1 decomposition of a four-dimensional tensor equation, similar to the
Einstein equations. This can be seen when we inspect the behavior of a charged particle, e.g. an electron,
under the influence of an electromagnetic field. The (“Lorentz”) force ~F which an electron experiences is

~F = q( ~E + ~v × ~B) .

Let us consider a case where an electron moves in a homogeneous magnetic field orthogonal to its initial
velocity ~v. Here, ~E = 0, and, as it is well known, the solution of the equation of motion is a circle around
an axis parallel to the ~B field.

But now let us imagine a physicist sitting in a train, which is traveling through the ~B field with the
same velocity as the initial velocity of the electron (see fig. 2.8) i.e. the electron resides at rest on the

Figure 2.8: If an electrical charge e is moved in a magnetic field B, it will experience a sideway force
~F = e ~v × ~B. However, if ether theory is abandoned and velocity treated as a relative quantity - as
seen from a train with the same speed, the velocity of the charge is zero, so why does it move sideways?
Considering this situation actually guided Einstein to his theory of relativity [Rin93].

finger tip of the physician in a train’s cabin. The velocity of this electron, as seen by the physician, is
zero. So whatever kind of magnetic field the physicist would measure, it cannot influence the electron.
On the other hand, we know that the electron will start to move and follow a circular path as seen from
outside, so it cannot remain at rest in the hand of the traveling physicist. So what ghostly force can
demand the movement of the electron as seen by the physicist, if it is not the magnetic field? The only
source left for such a force is the electric field, meaning that the moving physicist will experience such an
electrical field when passing through the homogeneous magnetic field. However, a vector (field) which is
zero in one coordinate system, will be zero in any coordinate system. Thus, this electrical field ghostly
appearing “out of nothing” just due to the motion of the observer can impossibly be a “usual” vector
field. Instead, it must be related to the magnetic field, giving rise to the idea that in reality these are not
independent vector fields, but components of some more complex object.

Thorough mathematical analysis using the framework of differential geometry has shown that they
can be seen as components of “an antisymmetric tensor field of rank two” in a four-dimensional spacetime.
This antisymmetric tensor field is called the Faraday field F . Such a field has six independent components
in four dimensions, which is exactly the number of components which are available in the two three-
dimensional (pseudo-)vector field ~E and ~B. These components, written in matrix notation, are identified



2.2. MODELING DISCRETIZED MANIFOLDS 45

usually as:

F = (Fµν) =







0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0







(2.49)

Where ′′ ~B′′ = (B1, B2, B3) and ′′ ~E′′ = (E1, E2, E3). So actually the electrical and magnetic field E,B are
just components of a four-dimensional tensor written “as if they were vectors”. But this decomposition
depends on the choice of coordinates: while in one coordinate system the E-components are zero, in
another one they are not. The Maxwell equations in their original form, treating of the electrical and
magnetic field as two “vector fields”, are thus just valid in exactly one certain coordinate system, that
one of the “ether”. As we nowadays know by experiments that such an ether does not exist, we need
a superior formulations of the equations in a coordinate-free manner, i.e. independent of the choice of
coordinates.

Written in this four-dimensional formalism, the “calculus of differential forms”, the Maxwell equations
may be formulated elegantly using operations like the exterior differential (“d”) and the Hodge star
operator (“∗”):

dF = 0 (2.50)

d ∗ F = −µ0J (2.51)

Hereby, 2.50 contains the first two Maxwell equations, which actually are one tensor equation instead
of two vector equations, and 2.51 contains the third and fourth Maxwell equations, which relates the
Faraday field to charged sources. J = (̺,~j) is the four-dimensional matter current. When the Faraday
field is examined in a certain coordinate system, its components may be measured as the electrical and
magnetic field, as quantities ~E and ~B relative to this coordinate system. By transforming the Faraday
field into another coordinate system, e.g. of a moving observer utilizing the Lorentz transformations as
known from special relativity, its components change such that part of an ~E field transits into the ~B field
and vice versa.

Coordinate-Free Formulation

The method of decomposing the four-dimensional Einstein equations into a set of three-dimensional
equations is similar to treating the four-dimensional equations for the Faraday field as the usual Maxwell
equations by introducing some observer. Before special relativity, the 3 + 1 formulation of the Maxwell
equations was the only one. It was considered to be the “right” physical formulation, because it was
thought that there is a special and unique spacelike slicing of the spacetime, meaning that there is a global
time which is valid for everyone everywhere in the universe, independent from some movement or other
influence. This concept of the ether was proved to be false (at least in the form as it was used originally),
and todays physical insight is that there is no special coordinate system which is “more physical than
others”, and all observers are equivalent. Although the three-dimensional Maxwell equations are known
to be valid only in one special coordinate system, they are still widely used and the four-dimensional
formulation of the Maxwell equations is hardly known outside of the community of theoretical physicists.

Two examples demonstrate that the four-dimensional formalism may actually be easier than their
corresponding 3 + 1 notation:

1. From F = 0 the lemma of Poincaré tells that F is an exact two-form, i.e. F can be written as

F = dA ,

meaning that F “has a potential”. A is the four-dimensional vector potential of the electromagnetic
field. In the 3 + 1 decomposition, this equation corresponds to the two equations

~E = divA0 and ~B = rot ~A

whereby A0 is the electrostatic potential and ~A is the magnetic vector potential.

2. Combining F = dA with d ∗ F = −µ0J , this leads in vacuum (J = 0) to the equation

d ∗ dA = 0

whereby d ∗ d ≡ 2 is the d’Alambert or wave operator. The solutions of 2A = 0 are waves of
the form Aµ = Aµ|~x=0,t=0 sin(~k~x ± ωt + ϕ), indicating the existence of electromagnetic waves in
vacuum.

The idea of the data model approach as part of this thesis is to cope the same level of expressiveness by
hiding component-wise expressions behind an abstract, coordinate-free layer.
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2.3 Physical Significance of Tensor Fields

2.3.1 Inspected Spacetimes

For developing numerical and visualization algorithms it is clearly useful to test these upon known
solutions which can be studied analytically as well.

Schwarzschild Metric

A few months after Einstein had published his final equations of the gravitational field in his publication
of the theory of General Relativity, Karl Schwarzschild found a solution for the spherically symmetric
vacuum case. Later Birkhoff has proven that this solution was the only one. This solution is known as
the Schwarzschild metric describing the gravitational field within a spherically symmetric spacetime:

ds2 =

(

1− 2m

r

)

dt2 − 1

1− 2m
r

dr2 − r2dΩ2 (2.52)

It contains a true singularity at r = 0 and a coordinate singularity at r = 2m, which is known as the
Schwarzschild radius. This coordinate singularity does not appear in other coordinate systems such as
the Eddington-Finkelstein coordinates or the Kruskal-Skeresz coordinates. The Schwarzschild spacetime
contains a spherical region out of which nothing can escape, because the drag of the gravitational field is
stronger than the escape velocity of light. This region is known as a black hole; its boundary is known as
an event horizon. The term “black hole” was coined by the US relativity expert John Archibald Wheeler
in the year 1967. The alternative naming, especially in the eastern hemisphere, was “frozen stars” (see
pp.290 in [Tho93]), that emphasizes the infinite apparent time delay of infalling light and particles on
the event horizon.

The Schwarzschild spacetime can be described in many coordinates, which then determine the prop-
erties of the spatial 3-metric that is the subject of 3-dimensional tensor field visualization, as investigated
here (primarily, but not exclusively). The original coordinates that had been used by Karl Schwarzschild
for deriving his solutions describe the spacetime as seen from a static observer who is at rest relative to
the mass contained in this spacetime.

Kerr metric

The Kerr solution was found as an exact solution of Einstein’s equation in the year 1967, and it was
discovered that it describes a rotating black hole. Up to present, no way of deriving the Kerr solution
in a physically reasonable way has been found (Straumann [Str96], Chandrasekhar [Cha83]), but it can
be proven that it is the only solution describing a rotating (i.e. stationary and axially symmetric) black
hole – at least in the outside region, it is still unclear if the solution is also unique in the interior part
beyond the event horizon. It describes a rotating black hole with mass m and angular momentum a.
In Boyer-Lindquist coordinates {t, r, ϑ, ϕ} the Kerr-Newmann solution [Str91] (which includes electrical
charge) is given by

ds2 =(1− 2mr −Q2

̺2
)dt2 +

(2mr −Q2)a sin2 ϑ

̺2
dtdϕ

− ̺2

∆
dr2 − ̺2dϑ2 − (r2 + a2)−∆a2 sin2 ϑ

̺2
sin2 ϑdϕ2 ,

(2.53)

or, alternatively written in a shorter form involving differences of basis vectors

ds2 =
∆

̺2

[
dt− a sin2 ϑdϕ

]2 − sin2 ϑ

̺2

[
(r2 + a2)dϕ− adt

]2 − ̺2

∆
dr2 − ̺2dϑ2 , (2.54)

whereby the abbreviations ∆ = r2 − 2mr + a2 +Q2 and ̺ = r2 + a2 cos2 ϑ are used. The constant m is
interpreted as the mass of the black hole and a as its angular momentum. The condition a < m must
hold for a physically reasonable black hole. The case a = m is known as a maximally spinning black hole.
For a = 0 the Kerr metric is identical to the Schwarzschild metric. In matrix notation, the metric is

g = (gµν) =








1− 2mr−Q2

̺2 0 0 1
2

(2mr−Q2)a sin2 ϑ
̺2

0 −̺2

∆ 0 0
0 0 −̺2 0

gtϕ 0 0 − (r2+a2)−∆a2 sina ϑ
̺2 sin2 ϑ








.
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As special cases we get

Q=a=m=0: Minkowski flat space, see (2.27)
Q=a=0: Schwarzschild solution

a = 0 Reissner-Nordström solution of electrically charged static black holes
Q = 0 Kerr solution

The Kerr solution contains two event horizons r± = m ±
√

m2 − a2 −Q2. The outer one at r = r+
corresponds to the event horizon of the Schwarzschild solution, while the inner one has the property of
a Cauchy horizon, which is not healthy to cross [Str96, Cha83]. It will not be discussed further here,
but it is just mentioned that the entire outside part of the universe becomes visible there as an intense,
infinitely blue-shifted flash for an observer crossing the horizon. Beyond the inner event horizon, the
future of an observer is no longer determined by his past and the central singularity becomes visible and
avoidable, i.e. the observer may chose a path leading to a parallel universe without falling into the central
singularity. Moreover, when inspecting the gϕϕ component of the Kerr metric, one finds that there exist
certain regions in the r < r− domain where ∂ϕ becomes timelike (2.1.1) i.e. gϕϕ > 0. Since ϕ is still
a periodic coordinate with ϕ + 2π = ϕ, this indicates the existence of closed timelike lines in the inner
region of the Kerr metric (like mentioned in 2.1.2 before).

Warp metric

Science and science fiction always formed a mutually inspiriting pair. Superluminal space travel, rendered
to be impossible by Einstein’s theory of special relativity, is a substantial essence of interstellar travel
scenarios, and one of the earliest workaround solutions is the idea of a warp drive. In 1994 Miguel
Alcubierre [Alc94] showed that the properties of a warp drive can be mimiced by a simple construction of
spacetime; he demonstrated on a concrete example that apparently global superluminal travel is possible
without violating the local speed limit of special relativity. The idea is to build a spacetime where the
shift vector field β in (2.47) smoothly increases. Thus the velocity of neighboring points, expressed by
the difference of the shift vector field, is always less than the speed of light, but the numerical value of the
shift vector field may be arbitrary large, indicating an arbitrary speed in the chosen coordinate system. If
we chose an asymptotically flat metric, we thus achieve arbitrary speed as compared to Minkowski space.
The shift vector field β can easily be modeled by an arbitrarily large number vi and a function f(r) as

βi = vif(r) whereby lim
r→∞

f(r) = 0, f(0) = 1 and r is the coordinate distance r =

√

(x− vt)2 + y2 + z2

from some (moving) point of interest, e.g. the location of a spaceship (assuming movement in x-direction
for simplicity hereby). The Warp metric can then be written as:

ds2 = dt2 − (dx− vf(r)dt)
2 − dy2 − dz2 (2.55)

or, in matrix notation,

(gµν) =







1− v2f2(r) vf(r) 0 0
vf(r) −1 0 0

0 0 −1 0
0 0 0 −1







. (2.56)

For f(r) we chose some plateau function, such that the metric hardly changes around r = 0 – then the
metric is just the Minkowski metric in a coordinate system moving at – arbitrary – speed v there, i.e.
a space ship would experience no acceleration there as the Christoffel symbols (2.34) ∇σ

µν = 0 vanish
around r = 0. In [Alc94] the function f was chosen as

f(r) =
tanh

(

σ (r + R)
)

− tanh
(

σ (r − R)
)

2 tanh (σ R)

(2.57)

but any other function fulfilling the desired asymptotic conditions like f(r) = 1
1+σr would serve as well. In

(2.57), R is the “size” of the “warp bubble” and σ is the falloff parameter, which denotes the “sharpness”
of the transition between flat, unmoving and flat, moving space. In the intermediate region, the spacetime
is not flat (although the spatial metric γ is flat everywhere). A visualization is given in fig. 4.35. By
inserting the Warp metric into the Einstein equations, we may compute the energy-momentum tensor
of the matter distribution that is required to produce the desired Warp spacetime. One finds that this
spacetime requires a region of negative energy density. Up to our current knowledge, it is not clear
whether matter of such kind may exist in our universe. However, under certain circumstances negative
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energy densities occur, e.g. due to the Casimir effect or when accelerating a mirror (as pointed out by
W.Israel [Isr97]). Nevertheless, the energy required to move a space ship of reasonable size has been
estimated to be of the order of a thousand solar masses, which will be quite unrealistic to achieve for
human technology in the next couple of years.

Brill Waves

In 1959, D.Brill [Bri59] has shown that black holes may also be constructed from pure vacuum with
no matter3 involved. This is due to the fact that gravitational energy has a mass equivalent like other
forms of energy. Small fluctuations of pure gravitational energy in asymptotically flat space, i.e. weak
gravitational waves, will just dissipate, like the waves created by a drop of water. However, if the
concentration of gravitational energy is strong enough, the spacetime contains an event horizon – a black
hole. The metric considered by Brill, with spatial components

ds2 = ψ4
[
e2q(d̺2 + dz2) + ̺2dϕ2

]
,

describes an axisymmetric gravitational wave with a toroidal shape. Brill himself could only consider
initial data to find if such a spacetime does or does not contain a black hole right from the beginning
Numerical simulations performed at AEI [AGL+99, Bru00] could evolve these initial data in time and
found that spacetimes without initial event horizon formed a black hole after some time once a critical
value of the amplitude was reached. The study of such solutions is of certain interest because they allow
to inspect the creation of black holes without assumptions of state equations for matter.

2.3.2 Mathematical Properties of Rank-2 Tensors

The metric tensor field is described by a n× n tensor on a n-dimensional manifold. Such a n× n tensor
G ∈ T ∗

p (M) × T ∗
p (M) is represented by a quadratic matrix Gµν in a coordinate system. To get an

intuition what the numerous values of the tensor’s representation mean, we can analyze this matrix by
decomposing it into scalar- or vector-components which have a straightforward interpretation. Also, we
may inspect invariants, that can be computed from the tensor in a coordinate-free way.

Symmetric/Antisymmetric Decomposition

The matrix transpose of tensor components yields a tensor again (the transposed tensor components
obey the same coordinate transition rule). This allows for the decomposition of an arbitrary tensor into
a symmetric and an antisymmetric component:

G =
G+GT

2
︸ ︷︷ ︸

S

+
G−GT

2
︸ ︷︷ ︸

A

i.e. Sij = (Gij +Gji)/2 and Aij = (Gij −Gji)/2.

For a 3-dimensional space, the antisymmetric part is constructed by three components, which can be
interpreted as a vector via cyclic identification v1 = A23, v2 = A31, v3 = A12:

A =





0 A12 A13

−A21 0 A23

−A31 −A23 0



 =





0 v3 −v2
−v3 0 v1
v2 −v1 0



 (2.58)

Thus any 3×3 tensor can be imagined as a symmetric tensor (visualized as a quadric surface, 2.3.2, which is
independent of the antisymmetric part), and a vector, or better as the rotation around an axis given by this
vector, because (2.58) has a structure similar to the cross-product; the choice of righthanded/lefthanded
rotation corresponds to the choice of sign in v1 = ±A23 etc. This kind of decomposition is also known as
polar decomposition.

3 It is interesting to remark that such solutions are actually in contradiction to Mach’s principle, which states that
local inertial systems are related to matter around. Gravitational waves like Brill waves demonstrates that in General
Relativity local inertial systems may also be influenced by “pure, matter-free” space. So although Einstein’s theory was
greatly influenced by Mach’s principle, it actually contain’s “Anti-Mach-solutions” [Rin93].
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Quadric Surface

A straightforward way to look at a tensor in a coordinate-independent way is to make use of its definition
as a map Tp(M) × Tp(M) → R, that maps two directions to a number. We then consider the set of
tangential vectors ~v ∈ Tp(M) which are mapped to the same number

G(~v,~v) = C . (2.59)

The coordinate expression in a chart {xµ} with ~v = {x, y, z} is given by

G(~v,~v) = Gxxx
2 + (Gxy +Gyx)xy +Gyyy

2 + (Gyz +Gzy)yz +Gzzz
2 + (Gzx +Gxz)xz (2.60)

and corresponds to the equation of a quadric surface, i.e. an ellipsoid or an hyperboloid, depending
on the signs. This quadric surface can be computed in any coordinate system by mapping unit vectors
~u ∈ Tp(M) with |~u| = 1 to

~v =
~u

√

G(~u, ~u)/C
, (2.61)

which obviously fulfills G(~v,~v) = C (compare with the definition of the four-velocity def. 33). If the tensor
is not positive definite, then ū becomes complex for C > 0 in certain directions, i.e. the quadric surface
is a hyperbolic surface then. However, a quadric surface does not display the full information content of
a general tensor but only its symmetric part. The antisymmetric part does not contribute to the quadric
surface, but can be displayed as an additional vector field.

Trace and Anisotropy

The trace of an n× n tensor G is an invariant and computed by index contraction

tr(G) := Gµνδ
ν
µ =

∑

µ

Gµµ .

With η the unit matrix, the tensor

D := G− 1

n
tr(G) η (2.62)

is tracefree (tr(D) = 0, tr(η) = n is the dimension of the underlying manifold). It is called the deviator
of the tensor G, while 1

n tr(G) η is the isotropic part of the tensor G. The isotropic part does not contain
any directional information; using the deviator can thus be used to emphasize the anisotropy of a tensor
by “removing isotropic background”.

Eigendecomposition

The most important decomposition of a matrix is given by searching for the directions which are un-
changed under the action of the matrix, i.e. we look for vectors v ∈ Tp(M) and scalar values λ ∈ C for
which

Gv = λv . (2.63)

These solutions are known as the eigenvector and the eigenvalue, respectively. With η the unity matrix,
a solution exists if

det(G− λη) = 0 (2.64)

(the characteristic equation) which yields a polynomial of order n in λ with n roots, i.e. there are n
(not necessarily independent) eigenvectors v(i) and eigenvalues λ(i) (we use bracketed indices here to
distinguish among this numbering scheme from covariant and contravariant indices). The n equations
(2.63) can be written as one matrix equation

Gij v
j
(k)

︸︷︷︸

=:T

= vi
(k)λ(k) ≡ vi

(k) δ
klλ(l)

︸ ︷︷ ︸

=:Λ

. (2.65)

If G is symmetric, then the eigenvectors are orthogonal and the eigenvalues are real. If further G has full
rank n, then the matrix T of the eigenvectors can be inverted and (2.65) can be written as

T−1GT = Λ (2.66)
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or

G = TΛT−1 ≡
(
v(1) v(2) v(3)

)





λ(1)

λ(2)

λ(3)









v(1)
v(2)
v(3)



 , (2.67)

i.e. the tensor representation matrix G can be diagonalized to Λ. The matrix T can be seen as a
transformation matrix into another (local) coordinate system, where the matrix representation of the
tensor object G is diagonal.

Since the trace is invariant under coordinate transformation, it can be read off easily in this coordinate
system that the trace is the sum of all eigenvalues, i.e.

tr(G) ≡
∑

i

λ(i) .

For a symmetric 3 × 3 tensor we may order the three real eigenvalues according to their value and
name them the maximum, medium and minor eigenvalues λmax, λmed, λmin with λmax ≥ λmed ≥ λmin.
Eigenvalues are invariant under coordinate transformations.

In a coordinate system using the eigenvectors as basis vectors {~vmax, ~vmed, ~vmin} the equation of the
quadric surface (2.60) becomes:

G(v, v) = λmax x
2 + λmed y

2 + λmin z2 (2.68)

with v = x ~vmax+y ~vmed+z ~vmin. Thus the quadric surface is an ellipsoid oriented along the orthonormal
eigenvectors, whereby the length of the i-th axis is given by 1/

√
λi, i.e. the largest extent of the ellipsoid

is determined by the smallest eigenvector and vice versa (this is clear also from eq. (2.61)). It is an
hyperboloid for λi < 0.

Once we know the eigenvalues and eigenvectors, we also know the quadric surface of the inverse tensor
g = G−1 or gmnGnl = δm

l , which is given by

g(V, V ) =
1

λmax
x2 +

1

λmed
y2 +

1

λmin
z2 (2.69)

with V = x ♭~vmax + y ♭~vmed + z ♭~vmin a covector in the same coordinate system.

Isotropy Artifacts It is common use to visualize tensor fields via their eigenvalues and eigenvectors
at each point. Using vector field visualization methods on fields of eigenvectors is a straightforward
method, but when computing integral curves in an eigenvector “field” one needs to take care that the
eigenvector equation determines its orientation, but not its sign, i.e. −~v is the same solution as ~v. Thus
an eigenvector may flip from one point to the next by 180o without indication of a vector field pathology.
Existing vector field visualization methods can thus not be applied directly.

Actually, using eigenvectors turns out to be problematic at all, because they are not uniquely defined
for an isotropic tensor, where all directions are equivalent. An eigenvector field’s integral curve in the
most trivial case of an isotropic tensor field would thus display unreal features, in the worst case it would
result in a chaotic agglomeration of line segments. Weinstein et.al. [WKL99] therefore developed the idea
of tensorlines (which will be addressed in more detail in 4.3.1) to address this problem by weighting the
integration with the tensor field’s isotropy, but this method involves some arbitrary parameters that allow
some user to adjust the “stiffness” of the lines. For a metric tensor field, eigenvector integral lines don’t
have a sound physical meaning – more physical insight is depicted by geodesics. They are intrinsically
free of isotropy artifacts, but impose the problem of appropriate initial conditions, because they are the
solutions of a second-order differential equation and require a starting direction as well, whereas vector
field integral lines just require seed points. This and the fact that computing geodesics is more effort (from
the computational and from the implementation aspect) has presumably prevented their application in
tensor field visualization beyond general relativity and differential geometry.

Principle Invariants

The coefficients of the characteristic equation (2.64)

λ3 − I1λ2 + I2λ− I3 = 0

can be expressed by the eigenvalues

I1 = λmax + λmed + λmin (2.70)

I2 = λmax · λmed + λmed · λmin + λmin · λmax (2.71)

I3 = λmax · λmed · λmin (2.72)
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and are called the principle invariants of the tensor (see e.g. the review in Boring’s thesis [Bor98]).
They can be used to express tensor properties in a coordinate-independent way as well. As Zhukov
et.al. [ZMB+03] pointed out, they can be computed without solving the cubic eigenvalue equation directly
from the tensor components in an arbitrary coordinate system. E.g., I1 is just the trace of the tensor.

Shape Classification

An intuitively useful classification of the shape of tensor ellipsoids was invented by Westin [WPG+97]. If
we are primarily interested in the directions that are preferred in some tensor field, then we may disregard
the trace and just look at the relationship of the tensor’s eigenvalues. We may write a tensor G in matrix
notation as a (same as (2.67)) linear combination of its eigenvalues/eigenvectors:

G = vmaxλmaxv
T
max + vmedλmedv

T
med + vminλminv

T
min .

Westin [WPG+97] based his tensor shape classification on the relationships of the eigenvalues of a

(a) Linear - one small
eigenvalue

(b) Planar - two small eigen-
values

(c) Spherical - all eigenvalues
similar

Figure 2.9: Classification of a tensor ellipsoid by its shape, according to the relationships of the eigen-
values.

diffusion tensor, stating that the linear case corresponds to one large, dominant eigenvalue here. For a
metric tensor, the opposite interpretation is correct, since the length of the tensor ellipsoids (representing
a light sphere) is proportional to the inverse square root of the eigenvalue: the tensor ellipsoid is a needle
if one eigenvalue is very small as compared to the others - which is clear from (2.61). However, the
classification scheme was adopted by the visualization community with regard to diffusion tensors and
is now widely spread. Therefore we employ the inverse tensor’s eigenvalues here for consistency with
Westin’s definitions:

• Linear case: λmax ≫ λmed ≈ λmin, one eigenvalue of the inverse tensor is dominant. The tensor
ellipsoid is mostly like a needle along the eigenvector with the dominant eigenvalue and can be
approximated by

G ≈ vmaxλmaxv
T
max =: λmaxGl .

An example is a diagonal matrix with diagonal elements (1, 0, 0). The inverse tensor reveals a disc
(Fig. 2.9(b)).

• Planar case: λmax ≈ λmed ≫ λmin, two eigenvalues of the inverse tensor are dominant. The
tensor ellipsoid basically is a flat disc (Fig. 2.9(b)) that is spanned by the two eigenvectors with the
dominant eigenvalues and can be approximated by

G ≈ λmax

(
vmaxv

T
max + vmedv

T
med

)
=: λmaxGp .

An example is a diagonal matrix with diagonal elements (1, 1, 0). The inverse tensor is a needle
(Fig. 2.9(a)).

• Spherical case: λmax ≈ λmed ≈ λmin, all eigenvalues are of approximately the same size. No
direction is preferred (isotropic case), the tensor and inverse tensor ellipsoids are both spheres. The
shape of the tensor ellipsoid is basically

G ≈ λmax

(
vmaxv

T
max + vmedv

T
med + vminv

T
min

)
=: λmaxGs .

An example is a diagonal matrix with diagonal elements (1, 1, 1).
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Generally, a tensor G will be a blend of these three components and can be written as a linear combination

G = (λmax − λmed)Gl + (λmed − λmin)Gp + λminGs .

Normalizing the blend factors by the trace tr(G) = λmax+λmed+λmin yields invariants that only depend
on the shape independent from its size:

cl =
λmax − λmed

λmax + λmed + λmin

cp =
2(λmed − λmin)

λmax + λmed + λmin

cs =
3λmin

λmax + λmed + λmin
.

The scaling numbers 2 and 3 are used such that each shape factor is in the interval [0, 1]. Other normal-
ization choices are possible as well. The three shape factors obey the relationship

cl + cp + cs = 1

and can thus be interpreted as barycentric coordinates within a triangle, as illustrated in Fig. 2.10. The
spherical factor cs is a direct measurement of the anisotropy.
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Figure 2.10: Barycentric shape parameters and their corresponding tensor ellipsoids. The left edge
corresponds to zero linearity, bottom edge to zero sphericity and right edge to zero planarity. Note that
shown tensor surfaces correspond to constant minimum eigenvalue (such that the maximum half-axis of
the ellipsoid is constant), not constant trace.

Given the shape factors (two of them are sufficient) and the trace, the eigenvalues can be reconstructed:

λmin = cs/3 tr(G)
λmed = (cs/3 + cp/2) tr(G)
λmax = (cs/3 + cp/2 + cl) tr(G)

(2.73)

The shape factors provide an alternative view of the eigenvalues, two of them plus the trace contain the
same information. They may be analyzed on a tensor field as derived scalar fields; we call them the
“Linearity”,“Planarity” and “Sphericity” (fields) of the tensor field. The shape factors of the inverse
tensor are computed easily by exchanging cl ↔ cp while keeping cs.

Anisotropy Measurements

The eigenvalues are the basic quantities describing the shape of the quadric surface. If we are only
interested in the directional information, it is useful to normalize the tensor shapes to the same maximum
extent, thus forming a normalized eigenvalue triple:

(

1,
λmed

λmax
,
λmin

λmax

)
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As we have thrown away the trace information, the tensor shape has been reduced to two numbers (similar
to the shape factors, that actually are just two numbers as well). To enhance the anisotropic properties,
we might be interested inspecting just the deviator of the tensor field; the eigenvalues of an arbitrary
tensor’s deviator are given by:

(λmax − λmin, λmed − λmin, 0)

Both reductions can be combined to the eigenvalue triple of a tensor’s normalized deviator:






1,
λmed − λmin

λmax − λmin
︸ ︷︷ ︸

=:ǫ

, 0







whereby ǫ ∈ [0, 1]; ǫ is undefined in isotropic regions where all eigenvalues coincide. It is a reduction of the
tensor shape to the single quantity ǫ by dropping trace and isotropy information. This single quantity
can straightforwardly be used for indexing a colormap. Its known numerical range is useful as well.
Other shape and anisotropy classifications are possible as well, as for instance discussed in Alexander
et.al. [AHK+00].

Tensorfield Interpolation Aspects

When a tensor field is given on a discrete manifold, we sometimes wish to know the tensor field value
between vertices. Thus the question arises how to perform correct interpolation, given two tensor matrices
G1 and G2 on different points of the discretized manifold. The naive way is interpolating each tensor field
component separately like a scalar field. However, this interpolation scheme would not sustain certain
tensor field properties, like the linearity. Consider two linear tensors G1, G2 with different orientation
and their arithmetic median 1

2 (G1 +G2), :

1

2





1
0

0



 +
1
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0
1

0



 =
1
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1
1

0





The resulting interpolated tensor of two linear tensors thus yields a planar tensor, which is not neces-
sarily the expected result. An alternative interpolation scheme is thus to interpolate eigenvectors and
eigenvalues instead of tensor components. This method is not equivalent to interpolating tensor compo-
nents: if (v1, λ1) is an eigenvector/eigenvalue pair of G1 and is (v2, λ2) is an eigenvector/eigenvalue pair
of G2, then (v1 + v2, λ1 + λ2) is not necessarily an eigenvector/eigenvalue of G1 + G2. We can see this
algebraically by inserting the eigenvalue equations

G1v1 = λ1v1η

G2v2 = λ2v2η

into the expected eigenvalue equation

(G1 +G2)(v1 + v2) = (λ1 + λ2)(v1 + v2)η

which is only true if
v1(G2 − λ2η) + v2(G1 − λ1)η = 0 ,

but this is not necessarily the case. Thus for interpolating values among grid points, it makes a difference if
the eigenvectors/eigenvalues are interpolated or the tensor field. Which interpolation scheme is preferable
depends on the application and on the user expectations – usually the naive component-wise interpolation
is the most appropriate one, even though it does not sustain certain tensor invariants, but the reduction
of a tensor field to its invariants is information loss anyway.

Projections and Embeddings

Given two linearly independent tangential vectors u, v ∈ Tp(M), the projection4 g of a tensor G ∈
T ∗

p (M)×T ∗
p (M) in an higher dimensional space dim(M) ≥ 2 onto the two dimensional plane that is span

by these to vectors is given by

(g) =

(
G(u, u) G(u, v)
G(v, u) G(v, v)

)

. (2.74)

4 Note that the projection is different from the “image” or “shadow” of a metric ellipsoid casted onto a plane. This case
will be discussed in 4.3.2.
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If G is symmetric, g is symmetric as well. If G is a metric tensor field in the higher dimensional space,
then g is the metric on an embedded surface. The embedding space of an arbitrary surface with a given
metric is not necessarily flat or three-dimensional; nevertheless we can ask: Is there a surface with the
same metric coefficients as a given surface which can be embedded within flat, three-dimensional space?
Such a surface would give a good intuitive insight of a metric given on a surface. The general answer is
no: An embedding of arbitrary two-dimensional metrices in R

3 is not possible. Embeddings exist only
locally and global embeddings can only be found in rare cases.

Various theorems describe the existence and properties of embeddings: If we are just interested in
topologically equivalent embeddings (def. 14), then we can make use of Whitney’s smooth embedding theo-
rem [Whi32], which states that every n-dimensional manifold, can be embedded (topologically equivalent,
but not yet isometric) in an 2n + 1-dimensional Euclidean space. Here, we are interested in the rather
strict case of isometric embeddings (def. 12). The Nash embedding theorem [Nas65] states that every Rie-
mannian n-dimensional manifold can be isometrically embedded in a Euclidean space R

2n+1. In the case
of a spacetime, we require Clarke’s embedding theorem [Cla70] which states that any pseudo-Riemannian
manifold can be embedded isometrically in some R

n with constant metric tensor, where n is at most 90
and the number of timelike dimensions is at most 3. Thus a spacetime may need up to 87 spacelike and 3
timelike dimensions. Campbell’s embedding theorem states that any n-dimensional Riemannian manifold
can be locally embedded into an (n+1)-dimensional manifold with Ricci curvature Rab = 0. A similar ver-
sion of the theorem for a pseudo-Riemannian manifold states that any n-dimensional pseudo-Riemannian
manifold can be locally and isometrically embedded in an n(n+1)/2-dimensional pseudo-Euclidean space.

Given a two-dimensional manifold and a metric g on it with coordinates u, v, i.e.

ds2 = guu du
2 + 2guv dudv + gvv dv

2 ,

we seek a surface Σ(u, v) : R
2 →M such that

g(∂u, ∂u) = guu = G(Σ,u ,Σ,u ) (2.75)

g(∂u, ∂v) = guv = G(Σ,u ,Σ,v ) (2.76)

g(∂v, ∂v) = gvv = G(Σ,v ,Σ,v ) (2.77)

For an embedding into flat, Euclidean space M = R
3 with metric G = η and the abbreviations x :=

Σx, y := Σy, z := Σz , i.e. Σ(u, v) =
(
x(u, v), y(u, v), z(u, v)

)
, we get

guu = x,u
2 + y,u

2 + z,u
2 (2.78)

guv = x,ux,v + y,uy,v + z,uz,v (2.79)

gvv = x,v
2 + y,v

2 + z,v
2 (2.80)

Various approaches exist to solve this system of partial differential equations. Romano and Price[RP95]
used the Darboux equation to compute a local embedding in the misner spacetime, which describes the
initial data of two black holes colliding head-on. Nollert and Herold [NH96] were starting from a triangular
surface and adjusted the distance relationships among each edge to match those of the given metric; their
algorithm works well in principle, but suffers from ambiguities since only squared distances are available
from the metric, such that single triangle patches “flip sign”, revealing a surface with the same metric,
but unpleasant appearance. Ingrid Hotz [Hot02] solves this problem by also taking into account the
gaussian curvature of the surface and constructs surfaces from a given initial point by building rings of
triangles by “outspiralling” from a seed point. Another approach aiming towards a global approximative
embedding instead of a locally exact one was carried out by Bondarescu, Alcubierre and Seidel [BAS02]:
They describe a surface by a series expansion of basis functions and use a minimization algorithm for the
coefficients until the surface approximates the same metric coefficients in flat space as the given input
metric. In the published application apparent horizons from numerical simulations of colliding black
holes were investigated, where the spherical topology is already known, so spherical harmonics were used
as basis functions. However, other sets of basis functions like toroidal harmonics, were also possible in
principle to cover alternative topologies. While the numerical computations for this approach have been
performed in CACTUS [MPIfGP03], the according visualizations have been based on the fiber bundle
visualization. The formulation of the underlying data structures for visualization purposes are described
in A.1.3.
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Example: Schwarzschild Metric Let us carry out the work flow path of finding an embedding surface
in the case of the Schwarzschild metric (2.52) . We want to investigate the appearance of the spacetime
for a static observer, i.e. one that hovers at constant distance to the black hole. As this spacetime is
spherically symmetric, we limit our inspection to the equatorial plane ϑ = π/2. Then the spatial metric
becomes

ds2 =
1

1− 2m/r
dr2 + r2dϕ2 .

For the ease of computation we use cylindrical coordinates and model the embedding surface as Σ(r, ϕ) =
(r, ϕ, z(r, ϕ)). We get Σ,r = ∂r + z,r ∂z and Σ,ϕ = ∂ϕ + z,ϕ ∂z. The Euclidean metric is of the form

ds2 = dr2 + r2dϕ2 + dz2 ,

in these coordinates, i.e. Grr = 1, Gϕϕ = r2 and Gzz = 1. The embedding equations (2.75), (2.76) and
(2.77) then become

1

1− 2m/r
= grr = G(Σ,r ,Σ,r ) = G(∂r + z,r ∂z, ∂r + z,r ∂z) = 1 + z,r

2 (2.81)

0 = grϕ = G(Σ,r ,Σ,ϕ ) = G(∂r + z,r ∂z, ∂ϕ + z,ϕ ∂z) = z,r z,ϕ (2.82)

r2 = gϕϕ = G(Σ,ϕ ,Σ,ϕ ) = G(∂ϕ + z,ϕ ∂z, ∂ϕ + z,ϕ ∂z) = r2 + z,ϕ
2 (2.83)

We see that equations (2.82) and (2.83) are fulfilled if z does not depend on ϕ, leaving a single differential
equation for z(r):

1

1− 2m/r
= 1 + z,r

2

We can now solve this equation for z:

z =

∫
√

1

1− 2m/r
− 1 dr =

∫
√

1

1− 2m/r
− 1− 2m/r

1− 2m/r
dr =

=

∫
√

2m/r

1− 2m/r
dr =

∫
√

1

r/2m− 1
dr (2.84)

This integral can be solved by substituting ̺ := r/2m− 1, dr := 2m d̺:

z = 2m

∫ √
1

̺
d̺ = 2m

∫

̺−1/2 d̺ = 2m
1

2
̺1/2 = m

√
̺ = m

√

r/2m− 1

Thus, the embedding surface of a Schwarzschild black hole is a parabola rotated around the z-axis and
opened along the equatorial plane. It is defined only for r ≥ 2m. At r = 2m its slope is infinite, indicating
the infinite spatial distance to the event horizon as experienced by a static observer (grr becomes infinite).
(in other words: static observers cannot exist at the event horizon itself) whereas the circumference of a
black hole is simply 2πr.

A common visualization of this behavior is a throat as in fig. 2.11: traveling around its circumference is
easy, but radial traversal is hard and even impossible once the slope gets vertical. Depicting this behavior
in full space rather than on a two-dimensional slice by an embedding would require a six-dimensional space
(proof not given here), which is beyond current hardware graphics and mental capabilities. However, the
tensor field visualization methods that are explored in chapter 4 are able to depict this behavior even in
flat rendering space (see fig. 4.26 in particular).
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Figure 2.11: Embedding surface of the equatorial plane of the Schwarzschild metric. The metric ds is
directly visible as the distances on the surface Σ. The relation ds/dr of the metric distance differences
ds to radial distance differences dr becomes infinite at r = 2m.



Chapter 3

Data Model Design and Architecture

When performing numerical computations on some spacetime, one needs to discretize the underlying
physical manifold into a set of points. Many such discretization schemes exist, each of them providing
advantages and disadvantages. No “best” discretization scheme exists to work optimally under all cir-
cumstances and environments. Nevertheless, when a certain problem is to be solved, the user should
ideally only be bothered with the problem description on an abstract level an abstract level, and the
effective discretization scheme is chosen by some implementation. It might even change during some
computation, e.g. starting computations on a uniform grid, then continuing on a tetrahedral grid, and
go back to some adaptive mesh refinement grid on regular cells, as required by the numerical algorithms
automatically.

This behavior is not commonly in use today because these different discretization schemes have dif-
ferent properties and thus also different ways to describe and handle their data (a problem equivalent
to data exchange among different applications), although they all have the same roots. Following the
pioneering ideas of Butler [BB92], to tackle this problem it is therefore required to go back to these roots,
the abstract mathematical formulations of data in space and time. It must thus be our goal to derive a
data model which is able to

• abstract the geometrical description of spatial objects from their numerical representation in a
specific coordinate system

• abstract the physical computation domain from its underlying discretization scheme.

If both abstractions can be achieved, then there exists an abstract layer on top of the data but independent
from their actual representation. It allows to formulate tasks in a problem-oriented way and leaves some
implementation the freedom to chose the “best” method to solve them. Some development into this
direction was done in the Sophus library [MKH95], but not in the context of computer graphics or as
basis of a data model.

The data model presented here provides such abstraction mechanisms, and allows the formulation
of grid-independent algorithms in the same spirit as mathematical expressions can be formulated in
a coordinate-free manner using the form calculus. This does not necessarily mean that any existing
algorithm can be formulated grid-independent. Like coordinate expressions that are only valid in a
certain chart, also grid-specific algorithms can only be formulated for a certain grid with a-priori known
properties. It depends on the respective case if some algorithm can be formulated grid- and coordinate-
independent; however, the presented fiber bundle data model provides a “language” to describe the
requirements of an algorithm on the final application level. In this view, the various hierarchy levels and
components of this data model play the role of “semantic words”.

In particular when aiming at the visualization of tensor fields, one clearly would not like to rewrite any
algorithm and implementation for any data type. In contrast to scalar and also vector field visualization,
operating on tensor fields requires much more work just within the tangential space. Typical examples
are the computation of eigenvectors, or derived scalar fields like the “linearity” as mentioned before when
computing shape factors. All these operations as mentioned in 2.3.2 happen only in the tangential space
Tp(M), so it is just natural if not required to seek for a common interface of such operations independent
of the underlying manifold M and its discretization schemes.

The presentation also includes descriptions of the prototype implementation, but one should keep in
mind that this mapping of the presented concepts to the shown C++ API is not the only one, e.g. some
C++ object might be just an integer identifier in some HDF5 implementation.

57
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As mentioned by John Shalf [Sha03], an important issue for the practical acceptance of a data model
is also that it can be mapped bijectively to simpler models and their correspondingly simpler file format.
This is can be achieved by defining certain states of the more general model as default values, such
that these values are assumed implicit when interpreting data from a simple model. In particular they
don’t need to be specified explicitly when writing some file format. This ensures that the minimal set of
required information is contained in some file, with successively adding more information content only if
this information is actually required. Nevertheless, this mapping to “simpler appearance” is mainly an
implementation effort and does not touch the design of the full data model by itself.

3.1 Fiber Bundle Data Hierarchy

If data have the mathematical structure of a fiber bundle – it was stated by Butler [BP89] that practically
all scientific data are of this kind –, it can be organized as a cartesian product B × F of a base space
B with a fiber F (see def. 50). The fiber might optionally carry vector space structure. The base space
is described via its topological properties and algebraic invariants independently from its fiber data.
Sections of the fiber bundle (def. 54) are called “fields”1, and operations on the fields can be performed
independently from the base space. Although not all algorithms can be separated into pure base space
and fiber operations, many of them can be classified this way. This explains the strength of the fiber
bundle data model. Its properties are especially of worth for the purpose of tensor field visualizations,
but its capabilities go far beyond this particular application.

3.1.1 Hierarchy Levels

The data structure is formed by a tree-like structure with cross-references. It is constructed from asso-
ciative arrays, which allow to map certain semantic objects to the next hierarchy level that ultimatively
provide the actual data sets on the final leaves. This data structure together with a set of related func-
tions that are parameterized by these semantic objects form the data model. All data which are involved
in such operations, are accessible from some “trunk” object, which is called the Bundle object.

Structure of Bundle Objects

The base space might refer to data within a “physical space” by definition of def. 39. If so, it has a time
orientation and the dimension of the base space is at least one (e.g. a time series of a data value). The
most natural choice is thus to model the base space as a cartesian product (R× Σ, ↑). Another possible
choice were e.g. (S1 × Σ, ↑) to handle periodic events. Hereby Σ is the space describing the base space
at some instant of time. Via discretization of R we get a foliation of the physical space into an ordered
set of slices (the term “slice” is hereby borrowed from the 3 + 1 decomposition in numerical relativity
2.2.3). The ordering implements the time-orientation (def. 37) of the manifold. This is the uppermost
level structure of this fiber bundle data organization model. Alternative slicings of a given spacetime are

Figure 3.1: The evolution of two orbiting bodies emitting some waves, time is shown as ‘up’ coordinate.
The entire spacetime is sliced into spatial subspaces. This slicing determines the outermost hierarchy
level of the fiber bundle data structure described here.

possible. Usually, this is required only in the context of general relativity where there is no unique time

1Note that this definition is not identical to the algebraic definition of the term “field”.
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coordinate and various time coordinates may co-exist. A certain Bundle object needs to support only
one time slicing, which is sufficient for non-relativistic cases. Another time slicing can be computed into
another Bundle object, that provides the same functionality as the original Bundle and may share data
for efficiency. Alternative time slicings may also be used to impose a different ordering of data, e.g. to

Figure 3.2: A different time slicing of some evolution as in fig.3.1. It is handled from another Bundle
Object that may share the same data.

order some data according to some other quantity instead of time (“at which time does the pressure of
some gas reach a certain threshold” instead of “what is the pressure of some gas at a certain time”).

Limitations and possible Extensions

• Closed timelike lines (def. 2.1.2) or any spacetimes with causality violations are problematic to
implement in this framework. Such cases cannot occur in numerical evolutions of Cauchy surfaces,
so handling them is not a burning issue for practical purposes.

• Data without time-orientation can not be handled in this concept; however, they can be put into a
certain time step and handled as completely spatial data space.

• In an extended version (which was not implemented here), we would think of a fiber bundle over
an parameter space P × Σ. Then, the timelike case described above were just the special case
of a one-dimensional parameter space R × Σ, but a multidimensional discretized sparsely covered
parameter space R

n ×Σ is reasonable as well. It were useful for parameter studies, and the case of
time-independent data sets is formulated as a fiber bundle over a zero-dimensional parameter space
R

0 × Σ.

C++ API In describing the C++ implementation, we defer the definitions of the respective next level.
For a Bundle object, the next level is the “Slice” level. The structure of the outermost level can be
formulated using an associative array mapping elements from the parameter space to Slice objects. For a
one-dimensional parameter space, this can be done using the “map” template from the Standard Template
Library (STL), as the parameter space will usually not be covered uniformly:

struct Bundle : map<double, Slice>
{};

A Slice object is accessed from a Bundle Object via some floating-point parameter that specifies the
physical time:

double time = 7.85;
Bundle myBundle;
Slice&mySlice = myBundle[time];

Usually, only one Bundle Object is required per application, but multiple ones may coexist and share
data. Here, we opt to the concept of “indexing by physical time” instead of “indexing by the notion
of timesteps”. At first glimpse, this may sound troublesome, because timesteps as output by some
simulation process are given as exact integers, while floating point values always might lead to rounding
errors. However, the motivation is that one bundle object should not only cover a data from a single
simulation, but possibly from many simulations. These will not necessarily provide the same mappings
between timesteps and physical time. Moreover, the physical time difference among subsequent timesteps
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might not be constant. However, a correct visualization of the physical behaviour demands using physical
time and not exposing the artifacts of time discretization to the user. Although a “quick and easy”
implementation might still be based on timesteps, and advanced one needs to be able to handle indexing by
physical time correctly, including performing possible interpolation of intermediate timelike information.

Structure of Slice Objects

The physical space covered by a Bundle may contain various geometrical entities, like surfaces, some
bounded data volume, a set of particles and so on. By the timelike slicing of the base space, these
geometrical entities are split into multiple instances. Each of these is related to a subset of the spatial
base space Σ at various time slices (or parameter slices, in the generalized version). We call such a
(spatial) subset describing a geometrical entity a Grid Object.

To identify evolving Grids over various time steps, they must be identifiable through different time
slices. This is done by some associative map on each time slice, which maps some “Grid Identifier” to
the respective Grid Objects. The easiest implementation of a “Grid Identifier” is a textual description.
An advanced implementation might use a structure which allows to formulate semantic relationships
among grid objects as well, like “this surface is an isosurface of the volumetric data set xyz”. The only
requirement from the fiber bundle data model is an equality relationship among Grid Identifiers which
allows to trace a certain Grid within many slices.

C++ API As with the Bundle structure, we may employ an STL map for associating Grid Identifiers
to Grid objects within a Slice object:

typedef string GridIdentifier ;

struct Slice : map<GridIdentifier , Grid>

{};

As mentioned, the GridIdentifier could be a data structure carrying semantical information beyond the
fiber bundle data model and is typedef’d to a string for demonstration purposes here. A Grid objectcan
be can be assigned to and retrieved from a Slice Object via some Grid Identifier:

Grid myGrid;
mySlice["geometricobject"] = myGrid;

Grid&GeometryGrid = mySlice["geometricobject"];

An actual implementation will use reference-counter pointers to Grid objectinstead of Grid objects.

Structure of Grid Objects

A Grid Object is a collection of decompositions (topological spaces with CW-complexes, def. 60) and
houses many datasets, which are called Grid components or shortly components (but it should not be
confused with the different notion of the “components of a tensor field”). The components of a Grid are
categorized by common properties, especially their relation to the k-cells of the underlying decomposition
(i.e. k-skeletons of the triangulation according to def. 60). This categorization leads to the subsequent
grouping structure. Examples of such categories are the points (vertices) of the Grids, its cells or its cell
complexes. Examples of Grid components are the data sets describing e.g. the coordinate values of the
vertices in a certain coordinate system, relationships among points and cells. The Gridobject also is the
place to store an atlas. This “Grid Atlas” is a set of chart objects with transformation rules among each
other; it will be explained in 3.2.3.

The entity of all Grid components determines the topological properties (def. 2) of a Grid object.
I.e. there is no single enumeration value determining the “grid type”, but the full information about the
properties of a Grid object is not known until all Grid components have been inspected and interpreted.
This model allows a smooth transition among similar grid types, as two grid types might just differ by
a single grid component whereas all other components are identical (and could even be shared). It also
allows to construct many different of grid types by combinations of relatively simple grid components
as “building blocks”. The determination of the full properties of a grid type is rarely required, as for a
certain application only certain properties of the grid are required. Property-based operations on a Grid
object thus automatically lead to synergy effects among similar grid types. They allow to find and make
use common properties that would have hardly be found when using the enumeration-based method,
which is simpler to implement in a short-term approach and which is the method usually found in data
handling and visualization environments.
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All grid components related to a certain type of k-cells (e.g. equal dimensionality and same neigh-
borhood information) are grouped together into “Topology Objects”, the fourth level in the fiber bundle
hierarchy after the Bundle, Slice and Grid levels. Topology objects have an Index Space associated with
it and its data sets are organized in compatible arrays, a concept defined as follows.

Concept of Arrays and Index Spaces A Topology object imposes certain restrictions on the data
set it contains, in that all of these data sets have to share the same index space (definition following
below). They are discrete sets and will be described by “arrays”, a term which we need to define yet:

Definition 64 An array A is a “discrete map”, i.e. a map from some subspace I ⊂ N to some space
D. It associates some data element A[i] ∈ D to an integer value i ∈ I (the “index”):

A : I −→ D
i 7−→ A[i]

(3.1)

The notation A[i] is used here to indicate indexing with integer arguments in accordance with the array
indexing syntax of native C++ arrays.

Definition 65 The set of all valid indices I of an array A is called the Index Space IA of the array A.

In this definition, no relationships among the elements in the Index Space is imposed, in particular no
neighborhood information is implied, i.e. the Index Space does not necessarily need to be a connected
[see def. 4] subspace of N). This definition is in contrast to e.g. the array definition in POOMA[Cod],
where an array object also implicitly contains neighborhood information about its indices. An array in
POOMA is thus considered a fiber bundle over a topological space by itself, but in the context of this
model it is just a discrete map. It can be seen as fibers of the Index space, which does not need to be
connected.

Definition 66 The size of an array is the number of elements of its Index Space.

This definition is in accordance with the size() function within the STL[S+99]. It is not directly related
the number of bytes occupied in computer memory, because an array with non-zero “size” might even
use zero bytes in computer memory, when it is given implicitly or implemented procedurally and even
compile-time evaluated (see 3.1.2 for examples).

Definition 67 Two arrays A,B are compatible if their index space is identical, each index which can
be used for array A can be used as index for array B as well:

A,B compatible ⇐⇒ IA = IB

Obviously, all compatible arrays have the same size (number of elements). Having the same size is a
necessary, but not sufficient condition for two arrays to be compatible. Further constraints determining
compatibility are given in the description of the next level. All arrays beyond the fourth fiber bundle
hierarchy level, the Topology level, have to be compatible.

C++ API for Arrays and Index Spaces The concept of compatibility between native C++ arrays
not supported by this programming language. Here, array elements are accessed using some integer data
type, but there is no check whether the specified integer is valid for this type of array, neither numerically
(“range check”) nor conceptually (using an index for cells for an array providing per-vertex information
is an error). C++ allows the definition of user-defined objects which appear like native C++ arrays via
operator overloading. This functionality is frequently used to define objects that implement the missing
range check functionality and still behave mostly like native C++ arrays. To implement the concept
of index spaces, we additionally intend to verify the correct index depth on each element access. In
contrast to the numerical range check, this information is available at compile-time and therefore should
not impact runtime behavior. It is thus required to attach additional information to mere numbers, thus
allowing them to carry information about their respective index space. This is done via integer proxy
types, which are C++ class objects behaving like integers (especially regarding performance and memory
requirements), but actually are classes. The definition of an array then includes the specification of the
allowed index space and only appropriate integer proxy types may be used to access the elements of
the array. This “check for correct index space” is based on type information and is thus performed at
compile-time only and does not impact execution speed. It nevertheless improves programming security.
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Using C++ template notation, an array is written as the type Array<Index, type>, whereby Index

stands for the array’s index space IA. The actual implementation is untouched by this notation, in
particular the storage method of the array elements: they can reside in a contiguous memory block in
local or shared memory, as sequence of partially loaded data, which is read from disk on demand, or as
list of elements, etc.

The concept of an array is reflected by a class hierarchy of three levels:

1. an abstract base class which provides mere runtime size() and compile time index space informa-
tion

2. a derived abstract class which provides procedural read-only element access

3. a concrete class which handles array element generation, either by storing elements in compute
memory or creating element values procedurally

An exemplary C++ class hierarchy implementation is like this:

template <class Index> class IndexedArrayBase
{
public : virtual Index size () const = 0;
};

template <class Value, class Index>
class ArrayBase : public IndexedArrayBase<Index>

{
public : virtual const Index&operator[](const Index&i) const = 0;
};

template <class Value, class Index>
class Array : public ArrayBase<Value,Index>

{
Value∗values ;
Index n;

public :
Index size () const { return n; }
const Index&operator[](const Index&i) const

{ return values [ i ]; }
};

In this scheme, the purpose of the IndexedArrayBase class is to allow storage of untyped array pointers
that allow runtime-type conversion via C++ runtime type information (dynamic cast). The purpose of
the ArrayBase class is to allow procedural access to array elements. The concrete memory layout or
value creation algorithm is not specified for this interface. The Array class is a possible implementation
of a simple class that actually stores data values in memory. In contrast to a procedural class, it also
allows writable data access (member functions not shown).

In the fiber bundle data structure, only pointers to IndexedArrayBase objects are stored. All such
array pointers within one Topology object are of the same type, thus ensuring index space consistency
and array compatibility. If some algorithm requires read-only data access, it will dynamic cast such
pointers to an ArrayBase object. If it requires write-able data access or wants to circumvent the (slow!)
virtual element access functions by direct data access, it would dynamic cast the pointer to an Array

object. For performance reasons, it is recommendable to instantiate array algorithms over a list of known
Array types. The associated ArrayBase objects should only be used as “worst case” for Array types
which are introduced just at runtime (when re-compilation of the array-specific algorithm is not possible
or not desirable). By this approach, algorithms gain speed by the cost of increased compile times and
increased binary execution code. For n arrays and p array types involved in some algorithm, this results
in an np compile-time overhead. Clearly, using this technology can easily reach the limits of available
compiler technology and the code developer’s patience. On the other side, each instantiated algorithm
is capable of using the various features provided by an array implementation to its full extend (e.g.
the computation of values on-demand) and thus optimal performance is achieved for numerous special
cases and combinations of them. This is particularly important when describing certain properties of a
Grid object via procedural arrays, like the coordinates of a uniform grid or the cell type of a regular grid.
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Limitations

• The array interface as shown does not return a value, but a reference to some variable containing
the value. This results in better performance for data types which are more expensive to copy in
memory than a pointer. This is especially true for tensor types which consist of many float values.
However, for procedurally computed data values the result has to be stored in a persistent memory
location. If the same memory location is used for each call to the element access function, then the
array element access will not be thread-safe and not reentrant.

• Arrays with varying return types (e.g. returning sets with varying cardinality) impose implemen-
tation problems:

– the required memory resources can no longer be computed from the array size and array type
alone,

– algorithms can no longer execute identical code per element but must explicitly inspect the
element type,

– type information must be returned in addition to the raw data.

It is hard to find an efficient solution for this problem (e.g., returning an array is possible, but
inefficient). This is a major hurdle in implementing sheaves with stalks (see def. 55) instead of a
fiber bundle with fiber objects.

• The mentioned np compile-time overhead impacts code development productivity. It requires to
limit the number of possible array implementations to the most important cases and thus practically
disables a fully generic approach, including user-defined array implementations.

C++ API for Grid objects The most frequently used Topology objects of a Gridare mandatory, but
others (e.g. for usage within Adaptive Mesh Refinement) may be added dynamically.

struct Grid
{

typedef string TopologyIdentifier ;

list <Chart> Atlas ;

Topology<IndexSpace<0> > Points ;
Topology<IndexSpace<1> > Connectivity , Edges, Faces;
map<TopologyIdentifier, TopologyBase> Topologies ;

};

Topology objects are modeled as template instantiations over an index space. Their internal structure
will be explained in the next section. In addition to Topology objects, a Grid object houses a set of
Chart objects, the “Atlas” (see 3.2.3), which specifies the “potential” of a Grid objectrather than its
actual state: It tells which coordinate representations are possible for the data stored on the Grid object,
but these coordinate representations do not necessarily exist yet.

Structure of Topology Objects

Each Topology Object contains an array describing the neighborhood information for each element, i.e.
the “Neighborhood” array is a mandatory Grid component stored at the Topology level. Each element
of the neighborhood array specifies an open set around a topological point. Here the term “point” does
not only refer to the vertices of a Grid object, but also to e.g. the k-cells of a Grid object, as the set
of all k-cells of a Grid object form a (discrete) topological space by itself (but not within the physical
space, where this set is just a k-skeleton). Consequently, the dimensionality k is useful for classifiying
Topology objects.

The cell dimensionality is not a sufficient description, and beyond this purely mathematical property
we may additionally categorize Topology objects with respect to their relationship to the physical space.
Subsets of the physical space are denoted as “primary”. Sets which describe properties of primary sets
are “secondary” and further on. This semantic information (it gives information about the purpose of a
Topology object) is called the index depth:

Definition 68 The index depth of an index space is the number of dereferencing operations that is
required to reach points within the physical space from some Topology Object on this index space.
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Primary sets (i.e. information on vertices) get assigned an index depth of 0, secondary sets (information
on k-cells)) have depth 1 etc. A set of index depth n+ 1 is built by groupings of elements taken from a
set of depth n. The index depth is a property of an index similar to the type of a pointer types in C++ .
This analogy is demonstrated by this code fragment:

double x; // primary data, index depth 0
double ∗x; // secondary data, index depth 1
double ∗∗x; // index depth 2

An index can be interpreted as a “relative pointer” - it does not point to an absolute location, but to a
location within arrays. A certain index is valid for all arrays within a Topology object (in contrast, a
pointer is only valid within a certain array). The index depth corresponds to the type information of a
pointer. An example of various Topology objects with different various index depth and dimensionality
is given in table 3.1.

index depth dimensionality
Vertices 0 0
Edges 1 1
Faces 1 2
Cells 1 3
Collection of vertices 1 0
Path of connected edges 2 1
Surface built from faces 2 2
Cell complex 2 3
Set of cell complexes 3 3

Table 3.1: Various Topology objects that might reside on a three-dimensional grid.

A third essential categorization number is the refinement level. It allows to specify two or more
Topology objects for topological elements of the same dimensionality and same index depth, e.g. the
vertices of a grid, with different sizes of the corresponding index space. In special cases, the refinement
level might be multidimensional by itself to formulate e.g. refinement in x-direction only vs. refinement
in y-direction only. However, this case is problematic as it does no longer provide an ordering relationship
among refinements.

These three categorization criteria “index depth”, “dimensionality” and “refinement” do not yet pro-
vide a complete description of Topology object. For instance the operation of “subsampling”, which
selects each nth element from within a Topology object, increases the refinement factor, but leaves in-
dex depth and dimensionality unchanged. In contrast, the operation of “downsampling”, which averages
n elements respectively from within Topology object, sustains dimensionality but increases the index
depth. However, both operations are not commutative: first subsampling, then downsampling leads to
another data set than first downsampling, then subsampling. The “Topology Identifier” per Grid object
mentioned in the former section needs to reflect the categorization scheme of the associated Topology ob-
ject. In particular it must allow freedom to distinguish among cases like the subsampled/downsampled
and downsampled/subsampled ones. It is required to carry the semantic information about the history
of the Topology object and to encode a rule on how to reproduce it. It is not yet clear how large the
parameter space needs to be for a sufficient description, that might be a topic of further research beyond
this current data model.

Topology objects are unique per Grid Object, but different Grid Objects may carry comparable
Topology Objects. Identity relationships among Topology Objects on Grid Objects allow to classify
grid types and operations on them. If two Topology Objects on different Grid Objects are comparable
or even identical, then certain algorithms (or better: components of algorithms, as will be described in
3.2.2) can be performed on both Gridobjects without changes.

A Topology object carries various data fields on it. These data should ideally be described in a
coordinate-free manner. However, numerical computations can only be performed in a certain chart.
The same data field may be represented in various ways, e.g. in different coordinate systems, like the
components of a vector field in cartesian and polar coordinates. A collection of representations allows to
select the “best” suitable one depending on the respective requirements. Data fields within a Topology ob-
ject are grouped into “Representation objects”, with the exception of the topological neighborhood
information, which is an “intrinsic” (i.e. representation-independent) property of the Topology object it-
self. Representation objects are selected from a Topology object via Representation Identifiers,
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which is a reference to a chart (a coordinate system) or another Topology object. This object is called
the “Representer” of a Topology object within a Grid.

C++ API The current implementation uses a textual description for the Topology identifier to encode
the three numerical categorization parameters and additional more information. The Topology object
is implemented as instantiation of a template class over an index space. This index spaces defines the
possible arrays that may be used for storing data fields within the Topology object. Topology objects
have a similar purpose as charts, they can both be used to select Representation objects. While
Topology objects provide neighbourhood information and multiple data representations related to % or
Topology objects, % objects provide transformation rules (which will discussed later in 3.2.3). They are
thus derived from the same base class:

struct TopologyBase
{};

template <class Chart>
struct TransformationBase
{};

// See 3.2.3 for definition.
template <class SourceChart, class DestChart>
struct Transformation : TransformationBase<SourceChart>;

template <int dims>
struct Chart : TopologyBase
{

map<ChartBase∗, TransformationBase<Chart>∗> Transformations;
};

template <class IndexSpace>
struct Topology : TopologyBase
{

ArrayBase< IndexedArrayBase<IndexSpace>, IndexSpace> Neighbourhood;

map<TopologyBase, RepresentationBase<IndexSpace> > Representations;
};

Abstract operations are possible on ChartBase objects, but operations involving the detailed layout of
a Chart or Topology require specific code, usually formulated via instantiations of generic template
programs. RepresentationBase is an abstract base class for all Representation objects for the same
index space.

Structure of Representation Objects

Representation objects contain a mandatory Grid component called “Positions”. It stores the gen-
eralized “coordinate” locations of the points of a Topology object. In the case of a vertex related
Topology object (i.e. index depth 0), the respective representations are representations in different co-
ordinate systems. The “representer” objects thus usually are charts, but the concept of using multiple
representations will also be applied to Topology objects of higher index depth. For Topology objects de-
scribing k-cells of a grid the “Positions” component stores the incidence relationships (def. 2.2.1) to other
Topology objects describing cells of different dimensioniality or refinement. The adjacency relationship
is stored in the Topology object’s neighborhood array. In this generalized sense multiple representa-
tions are no longer related via coordinate transformations (which are only defined point-wise on the base
space and its tangential bundle). Multiple representations of data on index spaces with depth larger
than 0 can be used to store data referring to other Topology Objects, thereby using Topology objects
as Representation Identifiers, i.e. “representers”, like charts (i.e. “chart objects”) select a certain
coordinate system. For instance, a data field which shall be computed on cells may stem from a data
field given on the vertices, faces or edges (and similar). These different data fields can be interpreted as
“multiple representations” (even though there is no natural transformation rule, as with tensorial data
on index spaces of depth 0).
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Examples:

• A color value shall be computed for each cell. Color data are given for each vertex and, inde-
pendently, for each edge (i.e. pair of neighboring vertices). The color value of each cell may be
computed by averaging all the colors of the vertices of this cell or from the colors of all edges of this
cell. The results may be different, so the first data field is to be stored in the Representation object
of “vertex-related cell data”, the latter one in that one of “edge-related cell data”.

• Given the vertices per cells, we want to compute and store the inverse information, i.e. the cells
per vertices. This data field, a map from indices of depth 0 to an n-tuple of indices of depth 1 (with
different n ∈ N for each point), is to be placed at the representation of “the cells in the vertices”.

The purpose of multiple representations and representer objects is two-fold: once to describe the history
of a data set (how it was created), and secondly to provide parameters for a query of a data set (how to
create it).

The availability of multiple representations allows coordinate-free formulations. E.g. the operation
v(f) with v ∈ T (M) and f ∈ C∞(M) (see def. 27) can be performed in an arbitrary chart {xµ} , where
we know the partial derivatives f,µ and the components of vµ. However, both f,µ and vµ might possibly
be known only on a subdomain of the entire manifold, since the chart {xµ} is possibly not defined on the
entire manifold. Thus an algorithm may freely switch (locally) to another chart to compute the required
scalar field v(f). The only input of the algorithm are the field names of the vector field v and the scalar
field f .

C++ API A Representation object is the instantiation of a template class over some “domain”. A
domain is an index space together with some “cell type” that specifies how to “locate” the elements of
the Representation objectwithin the topological space described by its representer. An example of a
domain is a cartesian chart, where the “cell type” is a triple of floating point values named “x”,”y” and
“z”. We get the specific Representation object by providing a % object (which is actually an class
object derived from an index space of depth 0 IndexSpace<0>, see previous paragraph):

CartesianChart3D myChart;
Representation<CartesianChart3D>

myRepresentation = myGrid.Points−>find( myChart );

Another example of a “domain object” is used for the description of triangle vertex indices; here the
“cell type” is a triple of three vertex indices (defined in a TriangleDomain class, which is derived from
the IndexSpace<1> class). The role of a “chart” object is taken by the Topology object describing the
vertices, e.g. the “Points” component of a Grid is used as the representer:

Representation<TriangleDomain>

myTriangleVertices = myGrid.Connectivity−>find( myGrid.Points );

We may say that “the connectivity of the grid is represented by the points of the grid”. The “positional
information” of this representation consists of the “points per grid cell”. It is now straightforward how
to formulate other relationships among Topology objects, e.g. the inverse relation of “cells per point”
(for instance, the triangles at each vertex). Moreover, Topology objects are not required to reside at the
same Grid. The formulation of “relative representations” between arbitrary Topology objects thus also
covers temporal and spatial relationships among different Grid objects.

The Representationo provides positional information (“coordinates” of whatever kind) on this index
space and an arbitrary number of fields2:

typedef string FieldIdentifier ;

template <class IndexSpace, class coord t>
struct Representation : RepresentationBase<IndexSpace>
{

ArrayBase<coord t, IndexSpace> Positions;

map<FieldIdentifier , IndexedArrayBase<IndexSpace> > Fields ;
};

The FieldIdentifier can be something else than a string, this type definition is given here just for
easier understanding. The type of the field identifier is beyond the semantics of the fiber bundle data

2Note that in the actual implementation pointers to arrays are used instead of arrays themselfes.
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model; a more advanced implementation might employ a more descriptive data structure here to encode
the physical meaning of the associated object. For instance, it might specify that field A is the gradient
of another field B.

Operating with Field Objects Representation objects finally carry arrays (def. 64). All ar-
rays within the Topology object housing this Representation object are compatible(def. 67), thus
a Topology object has a defined size (def. 66). Arrays within a Representation object, the “Field Ob-
jects” are identified via “field identifiers”. The set of all Field objects with the identical field identifiers
within a Topology object provides an abstraction of the individual field object and allows to perform
coordinate-free operations: field operations within a Topology object may be parameterized by specifying
the just field identifier, thereby deferring the decision which instance of the field object to select among
the available representations to the implementation. The set of all Field objects of a Bundle object forms
a section (def. 54) of the fiber bundle. If some algorithm wants to operate on sections only, it only needs
to know the field identifier. It is then left to the implementation to decide in which time range to perform
the operation. E.g. in some interactive environment it is preferable to execute some algorithm only for
the “currently selected” time slice, while in some non-interactive batch job all available time slices would
be handled. Also the specification of which grid to use is an independent parameter. This capability
of specifying field operations independently of a certain Grid achieves the desired abstraction from the
discretization scheme.
Example:

• A data field shall be retrieved for visualization from a remote simulation. Only subsets of the
remote dataset, e.g. various arbitrarily oriented 2D slices from within a 3D volume are retrieved
upon user request. A visualization may want to display all instances of the same field on the various
grid fragments.

• Numerical simulations of a metric tensor field shall be inspected, where data are available on uniform
grids, hierarchical meshes, and a tetrahedral triangulation of the spacetime. Once the visualization
has been set up for the given field, browsing through the different discretization schemes is possible
by exchanging the grid identifiers while keeping the field identifiers constant.

Figure 3.3: Overview of the complete Fiber Bundle hierarchy.
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3.1.2 A Semantic Language to Describe Data

The Fiber Bundle data model is built from a tree-like structure of five levels that are called the “Bundle”,
“Slice”, “Grid”, “Topology” and “Representation” group. The Topology group contains cross-references
to other Topology groups. A possible branch at this level refers to charts and coordinate systems. We
can interpret these hierarchy levels as the “syntax” of a language describing a certain data set, and the
datasets residing on each levels as the “words” of this data model language. In this view, a certain data
set is a specific sentence in this model. In the following we will explain how to construct such “sentences”.

To access the elements of a group, appropriate identifier objects have to be used. These “subgroup
identifiers” are of different data type and have a certain meaning:

Group name identifier type identifier semantics result
Bundle float value time Slice Object
Slice Grid ID (text) geometric entity Grid Object
Grid Topology ID (text) grid property Topology Object
Topology reference algorithmic context Representation Object
Representation Field ID (text) physical data field data array

The “Topology Identifier” is not exposed to the end-user. It is required only internally to determine and
compare properties of Grid objects. The “grid” and “field identifier” are visible to the user. They serve
to store semantic information beyond the pure mathematical description. An advanced implementation
might use data structures here to allow the formulation of semantic information on an higher level. E.g.,
it might tell that Grid object B is an isosurface of Grid object A, or that some field D is the derivative
of field C. It might also store physical information like “field ̺ is a density” and “field ε is an energy
per volume area”, or that “tensor field g is a metric”, “K is an extrinsic curvature” (as an example of
two fields with the same physical units but different meanings – physical units could be casted into the
field’s type information as well, similar to Brown’s SI unit library [Bro98] where the unit information is
formulated via C++ template types). Such extensions are left for future work.

Let us denote the full space of a manifold with any data available on it as the fiber bundle F(M)
(def. 50). The first three hierarchy levels “Bundle”, “Slice” and “Grid” just grab convenient subsets of
the base space M . A “Bundle” group B corresponds to the complete fiber bundle F(M) as far as it
could be of relevance for application purposes, i.e. B ⊆ F(M). It is formulated as a cartesian product
of spatial subspaces with corresponding fibers and a time coordinate, i.e. B = R×Σt, where Σt denotes
a “Slice” group. It is constructed by a set of spatial subspaces Σt =

⋃

iGi, where Gi is “Grid” group.
This structure is demonstrated in the following diagram:

Bundle −−−−→ R× Σt

t



yTime slicing

Slice −−−−→ Σt =
⋃

iGi


ySpatial Subdomain

Grid −−−−→ Gi ⊂ F(M)

(3.2)

Within each Slice group, a Grid object is uniquely determined by some (textual) identifier i.

Definition 69 The set of all Grid groups within all Slices of a Bundle B with the same Grid identifier
i is called a Grid Evolution Gi(B):

Gi(B) :=
{
Gi : Gi ⊂ B = R×

⋃

k

Gk

}

In an user interface only the grid identifier is visible when dealing with a Grid evolution. The specific
Grid object are hidden, although they are the real objects used by visualization and numerical algorithms.

A Grid object is constructed by many Topology objects with possible relationships among each
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other, as demonstrated by the following diagram:

Index Depth 0 ←−−−− Grid −−−−→ Index Depth 1


y



y

Vertices
Product
V × C Cells



y



y

Points ←−−−−
Points per Cell

C 7→ V ←−−−− Connectivity, Edges, Faces,...

(3.3)

The “Points per Cell” information is an example of such a cross-reference. Here one topological space is
treated as a chart object for another one: like R

n serves as a chart object for an n-dimensional manifold
M (thus providing n real numbers per point via {xµ} : M → R

n), also the topological space V may serve
as a “chart object” for another topological space C. Here V is the topological space of all “Vertices” and
C of all “Cells” of a grid. The map C → V between the discrete spaces V and C will yield a subset of
V for each element of C. It is a subset of N, but in general its cardinality will not be constant for each
element of C when the number of points per cell is be different for each cell (unstructured meshes). It
will the constant number three for a triangular surface.

These topological spaces on a Grid object, formulated by the Topology objects, are similar to the
usual concepts of “meshes”. However, usually “meshes” only refer to primary vertex-related informa-
tion and intermix cell-related information on them, whereas in this model the vertex and cell-related
information is treated distinct in separate spaces. When inspecting the topological space for vertices,
then the corresponding Topology object is similar to the original proposal for the formulation of vector
bundles[BP89]. We may visualize it in the following diagram, see diagram 2.46 for comparison with
Butler’s model:

Point Set

T



yNeighborhood Information

Topological Space
{
{xµ}

}


yAtlas

Manifold

{xµ}



yChart

B ←−−−− Cartesian Coordinates −−−−→ F


yBase Space B × F



yFiber Space

Positions Field Values


yLinear Algebra

Tensor Fields

(3.4)

There is a distinct difference to Butler’s concept 2.46 in that this model does not treat the fiber space
with the same semantic structures as the base space. E.g. no neighborhood information is implied
for the fibers. Although it might certainly exist, this is left to tensor calculus on the fibers but not
casted into the specification of a neighborhood. Instead, the entire fiber bundle is divided into many
topological subspaces (structured as shown in (3.4)) with respective fibers. The division into fiber space
and base space does no take place before a certain chart object is specified. On the abstract level of an
programmer or user interface, the fiber space and base space is only accessed via coordinate-independent
Gridand Fieldidentifiers.

The data in the fiber space can be categorized by the amount of information that is available on it. E.g.
the fiber space of a fiber bundle has a certain dimension and thus an element has the same dimensionality
at each point. If the dimensionality is unknown or may vary at each point, then we are dealing with
the generalization of a fiber bundle to a sheaf with stalks (imposing various implementation difficulties,
as mentioned at p.63). If we know more about an object with a fixed dimension, e.g. some linearity
relationships, we get a vector bundle, and in the special case of the same dimensionality of the fiber space
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and the base space, we end up with an tangential bundle. The relationships of the possible fibers and
their specialization by adding more information is shown in (3.5), which can be straightforwardly casted
into an class hierarchy:

Sheaf −−−−→ Stalk −−−−→ Cells per point

constant type


y

Fiber Bundle −−−−→ Fiber Section −−−−→ {Γµν
σ }

linearity



y

Vector Bundle −−−−→ Tensor Field −−−−→ gµνdx
µdxν

dim(M)



y

Tangential Bundle −−−−→ Vector Field −−−−→ vµ∂µ

(3.5)

Classification scheme

Similar to Butler’s original approach in 2.2.2 we may derive a data classification scheme from the data
model. It can be built from the following questions, which are more or less easy to answer for a given
scientific data set:

1. How many GridEvolutions exist in a certain data set?

2. How many time instances exist per GridEvolution (“timesteps”)? In general, what is the dimension
and density of the parameter space?

3. Which index depths are required per Grid?

4. How many Topology objects are needed per Grid per index depth, dimensionality and refinement?
Are there additional properties of a Topology object that go beyond these three categorization
parameters?

5. How many coordinate systems (chart objects) are desirable for each Topology?

6. What is the range of the cardinality for the coordinate representation of the topological points?
(How many numbers are required for the coordinates, and if this number varies from point to point,
what is the range of possible coordinate numbers?)

7. How many fields are contained in the fiber space of each Topology?

8. What is the tensor rank of a fiber field? If it is not a tensor field, what is its coordinate transition
rule?

The answers to these questions uniquely define the placements of pieces of a given arbitrary data set in
this data model.

Examples:

• Astrophysical simulation data from the evolution of a star cluster:

1. One evolving data set.

2. 1000 timesteps.

3. Only vertex data are given.

4. Only points are of relevance.

5. Data are given in cartesian coordinates.

6. Base space is three-dimensional.

7. We have three fields called “mass”, “metalicity” and “velocity”.

8. “mass” and “metalicity” are scalar fields, i.e. rank 0 × 0, “velocity” is a vector field, i.e. a
tensor field of rank 1× 0.
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• A static triangular surface:

1. One evolving data set.

2. 1 timestep.

3. Vertex and Cell data are given, i.e. index depths 0 and 1 are used.

4. Points and Connectivity are given (one topology of depth 0, one of depth 1).

5. Vertex locations are given in cartesian coordinates, Connectivity refers to the Points.

6. Base space is three-dimensional, each connectivity cells consists of three points.

7. We have no fields on the fiber.

8. No tensor field information.

• An hierarchical regular AMR mesh (vertex-centered data):

1. One evolving data set.

2. 200 timesteps.

3. Only Vertex-related data are available, i.e. and only index depth 0 is used.

4. Points information given in 32 levels of refinement, each refinement level is described as its own
Topology. They contain the same index depth 0 and dimensionality 0, but their refinement
level increases. Cell information is available via procedural cell Topology objects.

5. Vertex locations are given in cartesian coordinates and also relative to other refinement levels
(but not all of them).

6. The base space is three-dimensional, each vertex can have 1,2,4 or 8 parent vertices and one
or no child vertices.

7. We have one fields on the fiber called “energy”.

8. It is a scalar field.

Regular Topologies

Grids with regular n-dimensional topologies are usually traversed using n separate indices. Such an
iteration scheme allows easy selection of subspaces and subsampling, also known as “hyperslab” operation.
Cell and connectivity information is constant for all elements of a grid and usually treated procedurally.
The only information that needs to be stored is the extent in each dimension, explicit storage of this
cell information were possible, but inefficient. Here we will demonstrate how one can efficiently make
use of the abstraction concepts of the fiber bundle environment while still sustaining its generality. They
key will be the usage of techniques from C++ template metaprogramming, like those demonstrated by
Veldhuizen [Vel95].

Multidimensional Indices An n-dimensional iteration scheme can be implemented independent from
the actual dimension by using “multidimensional indices”. These are indices providing n incremental
operators, i.e. they may be incremented in each of n directions independently. The idea is to follow the
mathematical concept of proof by induction: Assume we have some operation defined for n dimensions.
Then expand its definition to one more dimension n + 1. By providing a one-dimensional operation,
we then end up with a natural recursive scheme covering dimensions. This scheme can directly be
implemented using recursive template definitions (for the n→ n+1 step) and template specializations (for
the n = 1 case). As the dimensionality is resolved at compile-time, we may expect optimal performance
from the compiled code. The template prototype of a multidimensional index looks as this:

template <int dims, class Index>
class MultiIndex : public MultiIndex<dims−1, Index>

{
Index i ;

};

template <class Index>
class MultiIndex<1, Index>

{
Index i ;

};
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A MultiIndex type of dimension n is derived from the MultiIndex type of dimension n − 1. To stop
the recursive definition, the MultiIndex of dimension 1 has to be defined separately via template spe-
cialization; it is no longer derived from a base class. Each MultiIndex contains and “Index” member,
which is basically an integer value. With each dimension added, one more Index member is added to the
class such that a MultiIndex of dimension n contains n index values. The additional Index template
parameter is used to specify some Index Space, thus allowing a type distinction among semantically
different multidimensional indices (e.g. multidimensional indices of cells or vertices).

Multidimensional indices provide incremental and decremental operations. Some native C++ code
iterating over an three-dimensional hyperslab,

for( int k=k start ; k<k finish ; k+=k increment)
for( int j= j start ; j< j finish ; j+=j increment)
for( int i= i start ; i< i finish ; i+=i increment)
{

// compute the linear index into a one−dimensional data array
int linear index = i + i TopologySize∗(j+k∗j TopologySize);

...
}

can be written independent of the dimension using multidimensional indices and its associated class, the
“Dimensionator” class (which is basically a multidimensional index as well, but serves to define sizes,
not iteration states):

typedef Dimensionator<Dims, Index> Dimensionator t;
typedef MultiIndex<Dims, Index> midx t;

Dimensionator t TopologySize, Start , Finish , Increment;

Dimensionator t Size = End − Start;
midx t mi;
do

{
midx t midx = mi + Start;

...
index type i = midx. linear ( TopologySize );

...
}
while( mi. inc(Size , Inc) );

The recursive definitions of the involved member functions is not shown here, but they are straightforward
to implement. The compiled code is reduced to the same efficient code like the above explicitly version
because the dimension is a compile-time parameter. The recursive template programming forces loop
unrolling for all multidimensional index expressions.

Zero-Memory regular arrays The neighborhood of a regular grid of dimension n can be defined
recursively by the tensor product of one-dimensional neighborhoods according to

Rn+1 := (Rn ⊗ {0}) ∪ ({0}n ⊗ {−1,+1})
R1 := {−1,+1}

and the connectivity (which vertices belong to a cell) is given by the nth tensor product of the set {0, 1}n.
To cast these operations into a recursive template metaprogam to get a compile-time evaluated procedural
array, we need objects which

• implement the set {0}, {0, 1} and {−1,+1} (“constant arrays”),

• implement the conjunction operation A ∪B for two arrays A and B (“consecutive arrays”), and

• implement the product operation A×B of two arrays A and B (“product arrays”).

By a suitable combination of these constant (i.e. procedural, compile-time evaluated) arrays both the
regular neighborhood and the regular connectivity information can be casted into suitable template
metaprograms providing the desired abstraction level.
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Constant Arrays Implementing an array that yields a constant set of values (like the sets {0}, {0, 1}
and {−1,+1}) with random access is straightforward. The relevant C++ template parameters are the
interval boundaries and the numerical increment. The instantiation of a such a constant array does not
use any memory, because the complete information is already available as pure type information. An
example implementation as follows:

template <int start , int steps , int increment, class Index>
class RegularIndexArray

{
public :

Index size () const

{ return Index(steps ); }

Index operator [](const Index&i) const

{
return Index( start ) + i∗Index(increment);

}
};

Iterators like in the Standard Template Library [S+99] can be added as well.

Consecutive Arrays The conjunction A ∪ B of two sets A,B is formulated as a template class with
two array types as template arguments. The resulting class shall behaves like one consecutive array. As
in STL [S+99], we expect the template arguments to export a value type type member specifying the
numerical storage type of the result. The value type from both array need to be identical or at least
convertible. An advanced implementation could also compute a type which is sufficient to hold the values
of both array arguments; such template algorithms are common practice in template metaprogramming.
A ConsecutiveArray can be used to, e.g. merge a vector<> and a dlist<> from the STL, but iterating
over the ConsecutiveArray does not expose this construction.

template <class FirstArray , class SecondArray> class ConsecutiveArray
{
public :

FirstArray first ;
SecondArray second;

typedef typename FirstArray:: value type value type ;
typedef typename FirstArray:: difference type difference type ;
typedef ConsecutiveArrayIterator <FirstArray, SecondArray, value type> iterator ;

typedef typename FirstArray:: return value type return value type ;

difference type size () const

{
return first . size () + second.size ();

}

return value type operator [](const difference type &it) const

{
return it < first . size () ? first [ it ] : second[ it − first . size ()];

}
};

STL [S+99]-compatible iterators can be added, too.

Product Arrays The product A × B of two arrays A : i 7→ a,B : j 7→ b is an array which maps a
pair of indices (i, j) to a pair of values (a, b). The pair of indices can further be reduced to a single index
by taking splitting it into an “higher” and “lower” part using a constant number, e.g. the size of one of
the two underlying arrays (which is a natural choice, although other choices were possible as well). A
possible implementation, which makes use of the STL [S+99] pair class, is shown in the following code
fragment; note that the get() function takes an index pair while the array random access operator []

takes a linear index:

template <class FirstArray , class SecondArray>
class ProductArray : public pair<FirstArray, SecondArray>
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{
public :

typedef pair<typename FirstArray::value type,
typename SecondArray::value type> value type;

typedef typename FirstArray:: difference type difference type ;

difference type size () const { return first . size () ∗ second. size (); }

value type get(const pair<typename FirstArray:: difference type ,
typename SecondArray::difference type>&it)

{
return value type ( first [ it . first ], second[ it .second] );

}

value type operator [](const difference type &idx) const

{
typename FirstArray:: difference type it first = idx % first . size ();
typename SecondArray::difference type it second = idx / first . size ();

return value type ( first [ it first ], second[ it second ] );
}

};

Each argument of the ProductArray template can be an ProductArray itself, thus arbitrary powers of
product arrays and indices can be achieved.

Regular Neighborhood A regular neighborhood R of dimension n ∈ N can be constructed from the
cartesian product of the base sets Z := {0} and I := {−1,+1}:

Rn+1 = Rn × Z + Zn × I
R1 = I

At first we define the multidimensional recursion scheme using the array definitions mentioned above.
The class RegularPointNeighbours provides an array of n-dimensional indices for the points the n-
dimensional point {0}n. This class does not require any memory, i.e. it is a type-only class.

template <int Dims, class Index> class RegularPointNeighbours
{
public :

// reference to an eventually existing lower−dimensional neighborhood Rn−1

typedef RegularPointNeighbours<Dims−1, Index> Rn 1;

typedef typename RegularPointNeighbours<1, Index>::Z Z;
typedef typename RegularPointNeighbours<1, Index>::I I;

// The product set Rn−1 × Z

typedef ProductArray<Rn 1, Z> Rn1 Z;

// The set Zn−1, taken from lower dimension definition
typedef typename Rn 1::Zn Zn 1;

// The set Zn (required for higher dimensions)
typedef ProductArray<Zn 1, Z> Zn;

// The product set Zn−1 × I

typedef ProductArray<Zn 1, I> Zn1 I;

// The concatenation of the two subsets Rn+1 = Rn × Z + Zn × I

typedef ConsecutiveArray<Rn1 Z, Zn1 I> Rn;

typedef typename Rn::value type value type ;
typedef typename Rn::difference type difference type ;

// A formal data member
Rn PointNs;
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public : // retrieve the number of elements information
difference type size () const

{ return PointNs. size (); }
// retrieve the nth neighbor of the point with index 0
const value type&operator[]( const difference type &it) const

{ return PointNs[ it ]; }
};

The formal data member is introduced here only to allow the overloading of a virtual class like in a class
hierarchy as shown on p.62. Without this constraint, the formal data member could be omitted and all
member functions may be static, because they do not .

What is left is the definition of the one-dimensional case. This is trivial as it is just the set {−1,+1}:
template <class Index> class RegularPointNeighbours<1, Index>
{
public :

// I is the set {−1, +1}
typedef RegularIndexArray</∗start=∗/−1, /∗steps=∗/2, /∗increment=∗/2, Index> I;

// Z is the set {0}
typedef RegularIndexArray</∗start=∗/ 0, /∗steps=∗/1, /∗increment=∗/1, Index> Z;

typedef Z Zn;
typedef I Rn;

Rn PointNs;
public :

typedef typename Rn::value type value type ;
typedef typename Rn::difference type difference type ;

// number of elements
difference type size () const

{ return PointNs. size (); }

value type operator []( const difference type &it) const

{ return PointNs[ it ]; }
};

These classes provide neighborhood information for a point with index 0. It can be extended easily
to the neighborhood of an arbitrary point shifting the retrieved indices by a constant offset, i.e. the
multidimensional indices of the point of interest (not shown here).

Regular Connectivity Similar to the regular neighborhood information, the regular connectivity
information can be constructed using the described technique. The connectivity is based on product
arrays of the set {0,+1}n, leading to the following recursive definition scheme:

template <int Dims, class Index>
class RegularConnectivity : public RegularConnectivity<Dims−1, Index>
{
public :

// C is the set {0, +1}n

typedef ProductArray< typename RegularConnectivity<Dims−1, Index>::C,
typename RegularConnectivity<1, Index>::C > C;

};

template <class Index> class RegularConnectivity<1, Index>
{
public :

// C is the set {0, +1}
typedef RegularIndexArray</∗start=∗/0, /∗steps=∗/2, /∗increment=∗/1, Index> C;

};

The bracketing operator [] and the extension to arbitrary points is not shown here, but similar to the
case of a regular neighborhood.
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Hierarchical and Dynamical Grids

In general, the instantaneous structure of a Grid object may change from one time step to the next one,
e.g. due to adaptive mesh refinement (AMR), where one grid point may be represented by a couple of
grid points in the next time slice, or a particle system simulation where some particles break up into
smaller pieces with own trajectories. This behavior can be handled by a representation of a subsequent

Figure 3.4: Particles within a Grid object may split up or merge during a time evolution. The same
can happen with the vertices of a Grid object or its cells, edges, etc., i.e. with all topological elements
that constitute Grid object.

Topology object by a preceding one. The “cell type” of such a representation are “future cones”, which
map vertices from a time T = t1 to the vertices at time T = t2. They define a child↔ parent relationship.
For vertices, the cell type is an array f of index depth 0 specifying a number of point indices for the next
time step:

f : I|t −→ P(I|t+1)

i 7−→ fi ⊂ I|t+1

where fi is a set of point indices from the index space It+1 at time t + 1 which is associated with each
element of the index space It at time t. The cardinality #fi of this set may vary from point to point; so
in this case we are leaving the concept of fiber bundles and arrive at the concept of sheaves (see def. 55),
which increases implementation difficulties, because the return type of an array is no longer of constant
size. However, using appropriate abstraction schemes, this is not a real conceptual problem. The worst
case, but also most straightforward implementation would employ a dynamic array like an STL[S+99]
vector<> for each element in a C++ implementation. In case of a non-varying grid (i.e. a constant
number of vertices) f is an identical mapping, which can be omitted completely in computer memory.

Figure 3.5: “Future Cones” allow the mapping of points from one topological space to the points of its
successor in a timelike evolution or among a spatial hierarchy of discrete topological spaces.

The same structure also works as “past cone”, hereby specifying gives all points which contributed to
the current grid point from the previous timeslice. If the number of grid points is constantly increasing
in time, then the “past cone” array would contain no more than one past index per grid point (or even
none, if some grid point does not have a predecessor). If some grid simplification occurs during evolution
and some points dissolve, then the past array will contain some non-trivial information.

The structure of future and past cone arrays can not only be used to indicate temporal changes of the
grid, but also spatial ones, therefore referring one grid to another one in a hierarchy. Such hierarchy cone
arrays indicate correspondence between various grid levels. A maximum of two hierarchy cone levels is
sufficient to traverse through arbitrary grid levels (similar to a double linked lists), but there could be
more if some requirement arises.
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These cone arrays (future cones, past cones, hierarchy cones) are used to map information from one
topological space (the “source” topological space) into another (the “target” topological space). They
play the same roles as coordinate functions map a manifold to R

n. The idea is thus to treat the target
topological space like a chart object (fig.3.6). Associated with a chart object (the “target” topological

Figure 3.6: Relationships among topological spaces are treated like a coordinate system on a manifold.
The coordinate functions are the “cone arrays” in this case.

space in this case) is a Representation object in the “source” topological space. It’s “Positional”
component is the respective cone array. Additionally we may store fiber fields in this representations.
This representation of the fiber fields is dedicated for information which is of relevance for the relation of
the two topological spaces, for instance the interpolation weights of one grid (e.g. a triangular surface)
within another grid (e.g. a uniform three-dimensional grid). These interpolation weights, which specify
the contribution of each point’s field value from the source grid for each point on the target grid, are
identical for all fields that might need to be computed from a source grid to the target grid. They are
preferably stored in the relative representation from one grid into another grid.

3.1.3 Combinatorial Structures

The positional information of the “Points” and “Connectivity” Topology objects provide vertex and face
lists, which are sufficient to describe polygons. However, for certain algorithms using these data sets
as the primary information is not efficient. The “winged edge data structure” has been invented to
support efficient operations (see Baumgart [Bau75]) on orientable manifolds. It is usually implemented
as a structure describing an edge by pointers to:

1. vertices of this edge,

2. its left and right faces,

3. the predecessor and successor of this edge when traversing its left face, and

4. the predecessor and successor of this edge when traversing its right face.

The use of pointers to relate information among points of topological spaces is incompatible with the
concept of (contiguous) index spaces and random access to elements. With an index space, the total
number of elements is known, it has “global” knowledge about its element, with some additional infor-
mation defined on each element, so adding new information to all elements (a new fiber) is trivial, and it
can be added once for all elements. Pointer-based structures for all elements with cross-references (e.g.
linked lists) do not know about all elements instantaneously , they have just “local” knowledge about
one element and its relationship to others; additional information structures (new fibers on each point)
have to be added locally to each element.

Nevertheless the information content as required by such local structures can be formulated in the
context of the fiber bundle model in a manner similar to replacing pointers by indices. Additionally, any
information given per edge needs to be formulated as fields defined on the set of edges (i.e. as fibers
on the topological space of edges). The only task left is then to find the “best” place for these fields,
where we need to choose an appropriate Representation object. Here, we may chose among the space
of vertices, edges or faces and need formulate the four fields of the winged-edge data structure as
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1. positions of the edges in the representation relative to the vertices, i.e. a pair of vertex indices for
each edge

2. a field of a pair of face indices in the representation of the edges relative to the faces, or two fields
called “left” and “right” containing face indices

3. a field in the face-relative representation?

4. another field in the face-relative representation?

In all cases we have the option to formulate a field of n elements also by n fields of one element each
(operations like Butler’s component projection and component direct product, p.40, can be used to switch
between both variants). Since 3 and 4 provide information about the neighbors of an edge, also a suitable
place could be to cast these fields into the neighborhood information of the “Edges” Topology object,
thus providing four edge indices per edge.

quad edge data structure The more recent quad-edge data structure was considered by Guibas
and Stolfi [GS85]. It is similar to the winged-edge data structure and also makes use of information
on vertices, edges, and faces. Edges play the leading role again. The quad-edge data structure groups
together four edges: an edge, the “reverse edge” (an edge with the two vertices exchanged), the “dual
edge” (referencing to faces instead of vertices, e.g. to the face right of the edge) and the reverse dual
edge (referencing to the face left of the edge). The recipe for casting this data structure into the fiber
bundle data model is quite straightforward by replacing structure members by fields on the topological
spaces of vertices, edges, faces and cells. Algorithms then need to use indices referring to the respective
topological spaces instead of pointers to the elements itself.

data structure conversion recipe The general recipe of casting some data structure into the fiber
bundle model is to replace pointers by indices and structure members by fields on the index space. For
algorithms that require frequent insertion and deletion of points, this re-formulation of the data structures
and operations may introduce some performance impact because any change of points in the base space
needs to be reflected in the fiber space as well. Additionally, topological cross-relations (future/past cone
arrays, hierarchical relationships) need to be checked as well. It might be more efficient to employ some
“free index” management instead of continuously adjusting the entire data structure at each change.
Another alternative is to use the fiber bundle data structures just for storage of static data and map
them to local data structures for highly dynamical algorithms. As such a mapping is bijective, it can be
done without much overhead, and still the advantages of both approaches can be used:

fiber bundle pointer-based
I/O global (parallel) local (sequential)
change of base space costly efficient
static traversal easy easy
adding fibers easy and efficient costly
fiber operations independent of base space specific to data structure

Explanation of the terms in the comparison table:

• I/O: the ability to read/write all data elements at once is a huge performance gain for large datasets;
high-performance I/O libraries like HDF5 [NCS03] require such abilities and become very inefficient
for sequential element-wise I/O.

• change of base space: adding or removing vertices, edges, faces etc.

• “static traversal”: operations like finding all the edges of one vertex, where the complete infor-
mation already is available.

• adding fibers: adding (or removing) data on vertices, edges, faces etc.

• fiber operations: numerical operations on data fields, like vector space operations on vector fields
(e.g. computing the magnitude of a vector on each vertex and storing this value with each vertex).
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3.2 Interface Specification and Design

The fiber bundle data model is based on hierarchically nested associative maps of identifiers to the next
hierarchy level. Instead of having the user of a programming or graphical interface directly deal with
actual data (the right-hand side of associative maps), any interactions and requests are to be formulated
via the respective identifiers (the left-hand side of associative maps). The full complexity of the data model
should not be exposed to the end-user, but only those identifiers which provide semantic information above
the mathematical context. These are the grid and field identifiers. Additional parameters are possible of
course, e.g. the specification of a time range for a certain operation, or the preference to select a certain
chart for coordinate-specific operations. Nevertheless, an API or GUI which allows the specification of
operations via grid and field identifiers achieves the desired abstraction level.

Example requests:

• visualize field “density” on grid “accretion disk”. Such a request would trigger an animation of
the evolution of some density field. It might perform coordinate transformations if the data are
provided in a coordinate system which is not appropriate for the visualization algorithm, e.g. polar
coordinates instead of cartesian coordinates.

• evaluate field “lapse” from grid “simulation volume” on a surface “apparent horizon”

• save field “beta” on all grids to disk

• display a list of all fields from a grid called “neutron star simulation”

3.2.1 Implementation Issues

Templates vs. Inheritance

A crucial decision is what part of the code in a C++ implementation shall be formulated by generic
programming and which part by object-oriented programming. C++ offers both possibilities, whereby
support for object-oriented programming is superior to generic programming. However, generic program-
ming offers a huge performance gain for runtime code, especially when modern techniques from template
metaprogramming [Vel95, SS01, Ber00] are employed.

Template metaprogramming is based on the discovery that C++ templates form a programming lan-
guage on their own on top of C++ . C++ templates provide

• Loop iterations through recursive template definitions

• Conditional operations through template specialization

As elaborated by Veldhuizen [Vel], C++ templates thus form a turing-complete language, i.e. any algo-
rithm can be implemented upon templates (at least in theory; practical restrictions arise due to limited
recursion depths, compiler bugs and last not least due to an awkward syntax which tends to get out of
the programmer’s control). These template metaprograms are interpreted by the C++ compiler (which
can be forced to compute e.g. the number π and print it as error message – that was actually the historic
discovery of this compiler feature) and transformed into constant numbers or execution code. In contrast
to a preprocessor, C++ templates are not independent from C++ : they “know” about C++ and e.g.
allow computations on types, not only on numbers.

With the recent advances of modern compiler technology, techniques from template metaprogramming
are increasingly used, e.g. POOMA [Cod] is entirely based on generic programming. However, such
codes have been mainly developed to perform numerical simulations where the desired operations are
known prior to program execution. This is not the case for an interactive visualization environment like
Amira [Con03]. Here the requested operations depend on user interaction and thus cannot be known at
compile-time. Therefore it is not possible to completely cast an interactive visualization program into
a template metaprogram. An appropriate compromise is required to still profit from these advanced
programming techniques as far as possible.

In the case of the Fiber Bundle concept, which will describe very low operations like element-wise
data access in a very abstract way, the use of operations that can be inlined by an optimizing compiler
is strongly desirable. When performing operations on each vertex of a huge data set, each performance
gain counts. On the other hand, we need to collect algorithms on a higher level such that they can be
called at runtime through abstract interfaces using virtual function calls. The fiber bundle data model



80 CHAPTER 3. DATA MODEL DESIGN AND ARCHITECTURE

Object oriented programming Generic programming

uses inheritance uses templates

decision at run-time decision at compile-time

works for objects
derived from the common base

works for objects
having the right members

one function created
for the base class – saves space

a new function created
for each class used – wastes space

virtual function must be compiled in sep-
arate code (function call overhead) and
cannot be optimized beyond the function
body – slow

code can be inlined and optimized beyond
the function body – fast

extension possible using only definition of
base class

extension needs definitions and implemen-
tations of all functions

useful for application frameworks, user in-
terfaces, high level structures

useful for small, low level constructs and
generic algorithms

Table 3.2: Generic vs. object-oriented programming

then provides means on how to parameterize such high-level operations, see p.86 and p.84, through grid
and field identifiers.

The basic idea is to invoke pre-compiled template metaprograms through virtual functions from
abstract base classes:

class AlgorithmBase
{
public : virtual void compute(int parameter) = 0;
};

template <class Type> class Algorithm : public AlgorithmBase
{

void compute(int parameter)
{

// invoke type− specific template metaprogram here
}

};

Then some code may operate on AlgorithmBase classes and invoke element-wise operations without
knowing the detailed implementation of a template instantiation. For instance, the AlgorithmBase

class could stand for an object describing the representation of vertices in a coordinate system, whereas
the derived object is the actual representation of the vertices in some 3-dimensional coordinate system
using some application-specific storage for the coordinate numbers. Coordinate transformations can be
requested in an abstract way which only involves base objects (at runtime), whereas the actual code
is instantiated once a new coordinate system is introduced in the application (at compile-time). As a
drawback, this code design does not allow the introduction of new coordinate systems at runtime.

Beneath the possible runtime performance gain achieved through template metaprogramming, tem-
plates can be used as compile-time check for conditions which otherwise can only be checked at runtime.
By using such mechanisms, it might be sometimes harder to get code to compile, but once it is compiling,
it is less prone to runtime errors. An example is to extend native C++ types with additional information
that can be checked for code consistency, like physical units [Bro98] or “index depth” according to def. 68.
In other words, the cost of struggling with template constructs might be overcompensated by reduced
runtime debugging costs. Certain kinds of errors, like using an index within a wrong index space, simply
can no longer occur.
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Memory Management

C programmers think memory management is too important to be left to the computer. Lisp
programmers think memory management is too important to be left to the user [ES].

In this implementation, we adhere to the latter opinion. Practical experience shows that memory manage-
ment in plain C++ is a real burden. Dangling pointers (unsoundness) and memory leaks (incompleteness)
are known pitfalls and direct consequences of the C++ native pointer concept. Dealing with these insuffi-
ciencies of the C++ programming language, also known as “bugfixing”, takes a significant amount of time,
which should better be spent on the real problems. It is thus better to solve this memory management
problem once in a general manner than to permanently suffer under it.

Survey of Existing Approaches Methods for automated memory management are subsided under
the keyword of garbage collection. In the domain of C and C++ , garbage collection has a bad odor because
it is considered to be complex with unpredictable runtime behavior and application pausing. The current
opinion in literature is that this was true in the early days of garbage collection research and development,
but this is no longer valid and algorithms have matured since. These days most non-trivial C++ libraries
and applications employ some kind of garbage collection, including such high-performance libraries as
OpenInventor. Within the terminology of garbage collection schemes, OpenInventor’s algorithm is called
“direct identification of garbage with immediate identification and reclamation (object destruction)”,
more commonly known as reference counting. This method is applicable for data structures which are
organized in a polytree (a singly connected graph). The Scene Graph of OpenInventor fits well into this
concept. In this scheme the operation of “immediate reclamation”, i.e. the reclamation of resources when
objects are deleted, is unbounded (it may take infinitely long) and may be an expensive operation because
a possibly large subtree must be completely traversed and destructed by a single event. For deep trees
with many leaves deferred reclamation/object destruction (e.g. by keeping a list or stack of to-be-deleted
objects which is decreased at the next allocation routine) is preferable within reactive applications (those
that need to respond fast on some event). “Deferred identification” is an optimization method to reduce
temporary changes in reference counts and is said to half the overall memory management time, but
it may cause minor pausing. Further optimizations for small objects (where problems arise when the
reference count itself occupies a significant portion of the overall memory) are possible by distinguishing
among single and multiple references.

Direct identification (reference counting) operates locally. As a consequence, non-local structures are
beyond its scope and may cause troubles. These arise if there are cyclic references. In the simplest
case, two objects refer to each other and thereby keep themselves alive, even if there is no reference from
outside (e.g. from variables within the main program, the “roots” of the graph). Such unaccessible but
resource occupying objects are “garbage”, leading to memory leaks. A possible solution to this problem
is to distinguish among weak and strong references: Strong references form an acyclic graph, which is
closed by weak references. Algorithms exist to trace cycles and to determine garbage this way.

A common approach to handle cyclic reference is to trace the entire graph of referencing objects from
the roots and to remove non-connected objects. This is called “indirect identification” of garbage. It is
done e.g. via marking the subgraphs of roots recursively and removing unmarked objects after completion
(mark and scan). Optimizations aim at reducing the (memory, disc,. . . ) storage defragmentation which
happens after many allocation/deallocation operations with varying storage cell sizes. Compaction of non-
contiguous free memory into larger contiguous segments is done by sweep algorithms (e.g. [JM88]), which
move all objects and update all references to them. Such mark-scan algorithms have significant application
pause time, but it can be parallelized, such that a single collector thread runs concurrently with one or
many allocating threads. Reducing the need to move objects is subject of further optimizations, some of
which speed up on the cost of memory usage, others trace generations of objects (generational garbage
collection) based on the observation that objects are mostly either very short-living or very long-living.

Hybrid methods of direct and indirect identification do local marks and scans, but may suffer under
the complexity of required operations at each object destruction.

Requirements in the Fiber Bundle Data Model In the case of the fiber bundle data structure we
do not have a large subtree nor do we expect a huge number of objects, so this structure is appropriate
for reference counting. However, due to cross-references we do not have a single connected graph, thus
requiring a more advanced scheme. Most of the memory requirements will be due to relatively few but
contiguous large data sets, so sweeping objects is not acceptable. Deferred reclamation is not desirable,
because a certain object might be tied to external resources like a graphical user interface component,
open files or network connections, texture memory in graphics hardware and similar. If such external
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Figure 3.7: An example graph of referencing objects demonstrated on the description of a surface in polar
and cartesian coordinates

resources are no longer required, they should be released as soon as possible. Usually the effort of (possibly
recursively) freeing resources is minimal.Last not least, because the entire data model implementation has
been constructed from scratch with no a-priori constraints (e.g. without the requirement to use native
pointers or to interface some existing reference counting scheme like that of OpenInventor), it could be
built as a cooperative environment, e.g. by explicit specification of strong and weak references.

The resulting constraints for the implementation of a superior “pointer” C++ classes or template
therefore are

1. reference counting: keep objects alive exactly as long as at least one pointer refers to it

2. weak and strong pointers: allow back links and circular references 3

3. support of the upcasting operation, conversion from child class to base class (going “up” in the
class hierarchy), like it is always possible with native C++ pointers

4. support of the downcasting operation: conversion from base class to child class (going “down” in
the class hierarchy), possibly revealing a NULL pointer, similar to the dynamic cast<> pointer
conversion in C++

5. constant objects

6. multiple inheritance

7. thread-safety

The condition “exactly as long as” instead of “at least as long as” rules out garbage collection schemes,
because we here want explicit control of resources.

Implemented Solution Simple reference counting pointers are dangerous because

• conversion from reference pointers to native C++ pointers is problematic, because the native C++
pointer does not ensure the existence of the pointed object - if the reference pointers is destructed,
then the object might be deleted but the C++ pointer is still existent (“dangling pointer”). It is
thus advisable to access reference counted objects through reference pointers only, not using C++
native pointers at all.

• circular references among reference counted objects leave to memory leaks. Such objects will never
be removed from memory, although they can no longer be accessed from the application any more.
A typical case is a double linked list, where each object refers to its successor and predecessor. An
object containing a reference pointer to itself will keep “itself alive” forever.

3In Qt, weak pointers are called “guarded pointers”.
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The implementation achieves 1 and 2 via indirect referencing using an intermediate reference counting
object. The reference count is not stored at the objects themselves, but in an special “referrer” object.
This referrer objects stores a pointer to the object plus two reference counters, a “weak” and a “strong”
reference count. The actual object contains a pointer to such a referrer object, exactly one such referrer
exists per object. Any pointer to the object increments the weak reference count. Strong pointers also
increment the strong reference count. Destruction of strong pointers decrements the strong reference
count, the last one also deletes the object, but leaves the referrer object intact. This referrer object is
kept alive as long as at least one weak pointer to the object exists. A weak pointer appears as invalid
(“NULL”) pointer if the strong reference count is zero. Any strong pointer is also a weak pointer. The
object itself contains a weak pointer to itself. Explicit destruction of the object resets the strong reference
count of its referrer object to zero, thus invalidating all strong and weak pointers to it. This mechanism
provides significant features:

1. back links are possible, thus completely eliminating the need to use C++ native pointers with their
danger of dangling pointers and unfreed memory,

2. explicit destruction of objects is allowed, thus pointers to automatically allocated objects on the
stack (no dynamic memory allocation overhead, except for the intermediate referrer) are possible,

3. to avoid access to reference counted objects via C++ native pointers, there should be no way to get
the address of an object via its reference pointer, except for debugging purposes. However, all object
members shall be accessed via the reference pointer through, appropriate operator overloading

4. no need for internal static_cast<>’s (like in the concept of “engines” that are sometimes used
in template metaprograms), because the referrer object contains an pointer of exact type to the
object.

Reference Pointers and Runtime Type Information A useful extension of reference pointer tem-
plates is their combination with runtime type information by implicit usage of C++ dynamic cast<>s.
Standard C++ code as

Base ∗ B;
Derived ∗ D = dynamic cast<Derived∗>(B);

if (D)
{

...
}

which can also be written in the shorter and more efficient (because the lifetime of object D is reduced)
code variant using a declaration within the if-statement:

Base ∗ B;
if (Derived ∗ D = dynamic cast<Derived∗>(B) )
{

...
}

can then be reduced to the shorter

RefPtr<Base> B;
if (RefPtr<Derived> D = B)
{

...
}

This shorter notation is especially useful when “Derived” is a complicated class name, e.g. some template
class with multiple parameters. However, arbitrary type conversions when using reference pointers is not
desirable, as this “feature” would annihilate C++ ’s type safety. It is thus preferable to allow dynamic
type conversion only within certain groups of classes, e.g. all classes which are derived from a common
base class (implementation details are not given here).

Reference Pointer Arithmetic Pointer arithmetic as it is known from native C++ pointers does not
make sense for reference counting pointers, because reference pointers are designed to point to single
objects, not to multiple objects residing consecutively in memory. Therefore incrementing or decrement-
ing reference pointers is not a valid operation. Nevertheless it is still of interest to have an ordering
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relationship among them to allow storing reference pointers in a ordered map or a hash table. Thus each
reference pointer needs to be assigned a number that is uniquely associate with the managed object. At
first glimpse one might think that the object’s memory address would be appropriate here. However, it
is not, because such a table could also be constructed by weak pointers; such weak pointers may change
their values (because their managed object is being destroyed) after insertion in the table, thus destroying
the table’s ordering. Retrieving the address of an destroyed object instead of NULL is not a good idea
either, because this address might be re-used due to a new allocation on the same numerical address
value. Instead it is possible to use the memory address of the internal intermediate reference counting
object. It is safe to use this address, because it remains valid and unique as long as at least one pointer
exists. This is surely the case as long as a table of pointers exists.

3.2.2 Abstract Interfaces for Grid Manipulations

Beside the data layout of the fiber bundle data model, its concept also provide a natural way to categorize,
parameterize and implement operations on this data structure. We not only get an abstraction scheme
on data organization, but also on procedures.

Grid Algorithms

Definition 70 Grid Algorithms are functions of a single Grid yielding one or more values:

f : R× Σt −→ R
n

G 7−→ f(G)

Examples of grid algorithms are visualization methods. They take a grid object and compute some result
(e.g. an image), which is not intended to be stored at the source grid.

The properties of a Grid are determined by a set of (independent, but related) Topology object.
Some grid algorithms can be split up to operate on the various Topology object independently, e.g. some
component of a grid algorithm might require just neighborhood information on the cells, another portion
just requires data given on the points of the grid (for instance, some averaging algorithm, which projects
data given on points to cells). Such an algorithm can be split up into two components:

1. a component which requires topological information (neighborhood relationships)

2. a component which performs actions based on data fields

The first component iterates over a set of elements: we call this a “topological iterator”. The second
component executes certain operations per element: we call this a “topological operator”.

This split of a grid algorithm is similar to the interpretation of a grid G as subset of a data space as
subset of a fiber bundle B×F , but now this split is performed within the function space: The component
of some grid algorithm f(G) which operates on the base space is the topological iterator f(B), the
component operating on the fiber is the topological operator f(F ). In pseudo-mathematical notation:

data space G
“fiberize”−−−−−−→ B × F



y
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function space f(G)
“fiberize”−−−−−−→ f(B)× f(F )

(3.6)

Such a split of an grid algorithm into base and fiber component (topological iterator and operator) obvi-
ously requires some linearity properties of the algorithm, which is not the case for arbitrary algorithms.
Nevertheless a large class of algorithms fulfills this condition and can thus be “fiberized”. Such algorithms
are parallelizable and scale linearly.

Examples for Topological Iterators:

• An often required Topological Iterator is an iterator which takes a Topology object and a Repre-
sentation identifier to traverse over all the positional elements of the respective Representation; it
calls an Topological Operator for each element. This is an “Positional Iterator”.

– A Positional Iterator for index space 0 is a “Point Iterator”, which calls a Topological Operator
for each vertex.
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– A Positional Iterator for index space 1 is a “Cell Iterator”, which calls a Topological Operator
for each cell. A Cell Iterator may call a Point Iterator for each cell to traverse over the vertices
of a cell.

• A more complex Topological Iterator takes a sequence of grids (e.g. a Grid Evolution) to trace
points throughout this sequence. It is useful e.g. to draw the trajectories of particles.

Examples for Topological Operators:

• Visualization methods which take point coordinates and draw icons at each point. The icon may
be parameterized by the values of a field at the same point, eg. a point colored by a scalar field,
a vector arrow, a covector plane, a tensor glyph. Most of the tensor field rendering algorithms
described in the next chapter are implemented as topological operators.

• A visualization method which takes a line segment and draws it with special illuminations techniques
(e.g. as presented by Zoeckler,Hege,Stalling [ZSH96]). In conjunction with a Cell Iterator, this viz
operator can display the edges of the cells of a Grid or integral lines of a vector field; in conjunction
with a Trajectory Iterator it draws the paths of moving particles. Still, there is one implementation
of the graphical rendering for multiple purposes.

Implementing Topological Iterators and Operators Usually both components interact closely,
so an efficient implementation is required to allow an efficient splitting of an algorithm into various
“topology-related fragments”. Operators only know about atomic data objects, but have no knowledge
about their relations in a larger context. Iterators only know how to find those atomic data objects and
how to traverse paths within them, but have no knowledge about the actual operation which is executed
on them. This approach allows maximal reusability of algorithms.

A Topological Operator that is to be called for each vertex element of a Grid object with coordinates
specified in a cartesian three-dimensional chart looks is demonstrated by this prototype (it could, for
instance, issue some OpenGL calls):

class Operator
{
public :

int begin ();
int apply(IndexSpace<0>::index t i , CartesianCoordinates3D&Point);
int end(int );

};

Note that none of the Operator’s function are virtual. A compatible Topological Iterator is a C++ tem-
plate taking the Operator as argument. Its purpose is to execute the Operator’s member function at each
element. The Topological Iterator for traversing a regular three-dimensional grid could be implemented
as follows:

template <class Operator> class RegularIterator3D
{
public :

int apply(Grid&G, Operator&what)
{
index max i, max k, max j;
Array<index,CartesianCoordinates3D> Positions;

... // initialize max ... and Positions from the Grid
int e = what.begin();

if (e) return what.end(e);

for( int k=0; k<max k; k++)
for( int j=0; j<max j; j++)
for( int i=0; i<max i; i++)
{
int I = (k∗max j+j)∗max j + i;

e = what.apply(I, Positions [ i ]);
if (e) return what.end(e);

}
return what.end(e);

}
};
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In practice it were preferable to employ multidimensional indices, which has been omitted here for demon-
stration purposes. By instantiation of the Iterator class on the Operator class, we get a concrete class
that achieves full performance since in the inner loop there is no function call overhead and all operator
functions may be inlined by an optimizing compiler. Nevertheless the Iterator class may be derived from
an abstract base class that leaves the apply() member function virtual, in accordance with the concept
of abstract algorithms as described on p.80. The topological Iterator may also depend on any runtime or
compile-time parameters, e.g. a time interval that allows the iterator to select a subset of points from a
Grid evolution.

Operator Caching Grid objects are a good place to store Operator objects such that an Operator
object may remember its state when it is applied again at to the same Grid object. Thereby some
computation can be abbreviated if the input parameters remain unchanged.

The mechanism works by querying a Grid object for an existing Operator object first, and only if no
such Operator object exists yet on a Grid object it is created, otherwise the old one is re-used. Operator
objects may co-exist in different flavors according to their input parameters and even for identical input
parameters produce different results, depending on how the Iterator Object applies the Operator Object
to each point. Thus the “Operator Cache” is accessed via two steps: first via an “iteration state”, which
is constructed from the Iterator Object only, and secondly from an “operator state”, which reflects the
relevant parameters of the Operator Object.

Grid Algorithm: f(G)
“fiberize”−−−−−−→ f(B)× f(F )

Iterator State−−−−−−−−−→ f(B)

Operator State
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f(F )

An application example are OpenGL animations of evolving Grids: once an OpenGL display list has been
compiled for each Grid object within an evolution, the display lists may be recalled from the operator
cache, thus achieving fast playback.

Grid Operations

Definition 71 A Grid Operation is a function f which operates on components from one or more
grids and stores the result in a grid. In pseudo-mathematical notation, with G,G0, G1, ..., Gn grids, f can
be written as:

f : G0 ×G1 × . . . Gn −→ G

Data sets (except the topological neighborhood information) are only present in Representation objects.
A frequent task is to compute data for storage in a Representation object (the “destination”, Rdst) from
data given in another Representation object (the “source”, Rsrc). We may categorize this operation
by the relationship of the source and destination Representation objects:

1. Rsrc and Rdst are contained within the same Topology (i.e. the data are different representations
of the same topological space); then this operation is a coordinate transformation (also called
a chart transition, def. 17)

2. Rsrc and Rdst reside in different Topology objects, but are related to the same chart; then this
operation is an evaluation

3. one or more source Representation objects Rsrc and the destination Representation object Rdst

refer to the same chart and reside in compatible Topology objects within Grid evolution; then this
operation is an interpolation.

Examples

1. Coordinate transformation: A metric tensor field is given in polar coordinates; it needs to be
computed in cartesian coordinates.

2. Grid evaluation: compute “cell-centered” data from “vertex”-centered data and vice versa or
determine some data values on a 2D surface given some 3D field.

3. Grid interpolation: compute smooth intermediate values of data given in subsequent time steps.
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All these operations of chart transition, evaluation and interpolation are hereby subsidized to the
same interface. Moreover, all these operations can be nested transparently.

For instance the “evaluation” operation requires the source and destination representation to reside
in the same chart. If there is no such representation in the Topology object t containing the source
Representation object, it is necessary to compute the required data representation via chart transitions
within the source Topology object. In case it is not possible to perform a chart transition to the
destination chart on the source chart, then all charts which have a transformation chain to the destination
chart need to be inspected. One or more chart transitions need to be performed after the interpolation
has been done in a found compatible chart. The following diagram displays the situation when data are
requested on a destination TopologyTdst in a chart {x, y, z} from a TopologyTsrc. Hereby data exist
only in a chart {η, ̺, ζ}. There is no direct transformation rule, but a common chart {r, ϑ, ϕ} exists with
transformation rule {r, ϑ, ϕ} → {x, y, z} in the destination chart and {η, ̺, ζ} → {r, ϑ, ϕ} in the source
chart:

Rdst{x,y, z} Rsrc{η, ̺, ζ}
(r,ϑ,ϕ)→(x,y,z)

x





y(η,̺,ζ)→(r,ϑ,ϕ)

Rdst{r, ϑ, ϕ} eval←−−−− Rsrc{r, ϑ, ϕ}
The request is formulated via specification of the destination Grid, Gdst, the desired destination chart
{x, y, z} and the source GridGsrc. The “point” Topologycomponent is used by default, but may be
overridden by some optional parameter.
Example: A scalar field is given in some {η, ̺, ζ} coordinates. A transformation rule exists into polar
coordinates {r, ϑ, ϕ}. The scalar field needs to be known on a uniform cartesian grid (e.g. for hardware-
accelerated volume rendering). This mechanism has e.g. be used for the volume rendering of “Lazarus”
data, as described in 4.3.3.

C++ API: Coordinate Transformation Given a certain chart, a Grid objectcan be queried for
Representation object that contains a specific field:

template <class Chart t>
RefPtr<Representation<Chart t> > QueryRepresentation(Grid&G,

const RefPtr<Chart t>&WhichChart,
const string &fieldname);

E.g. some vector field is given in polar coordinates. It is required in cartesian coordinates. If a transfor-
mation rule from polar to cartesian coordinates has been defined for the Charts on the Grid object(within
the “Grid Atlas”), it is employed internally to compute the result. Transformation rules among carte-
sian charts might be involved as well to shift the origin and the orientation of the polar coordinate system.

C++ API: Coordinate Transformation and Evaluation If some field is known to reside on some
source grid (e.g. data in a grid which is uniform in polar coordinates, but not in cartesian coordinates)
but is required on some other grid (e.g. on a uniform cartesian grid), then it can be requested via a
function

RefPtr<VertexArray t> QueryTransformativeEval(Grid&Dest, Grid&Source, const GridObj&Fieldname,
const RefPtr<ChartBase>&WhichChart,
const TopologyIdentifier &whichTopology=VERTEX TOPOLOGY);

The field may hereby be given on the Vertices or the Cells of the source grid. In the latter case, no
interpolation but straight copying will be performed. The implementation will then traverse a possible
chain of transformation rules on both the source and destination grid until the evaluation operation can
be performed in the “best” way.

C++ API: Hiding Evaluation as Coordinate Transformation It is possible to use the simpler
interface QueryRepresentation() for doing a coordinate transformation instead of using the more
complex QueryTransformativeEval interface by defining some known grid as a possible source when
requesting a field on the destination grid. This approach has the advantage that the evaluation operation
is then deferred until the data is actually required, like a transformation rule that exists, but is possibly
not evaluated. For this purpose, we need to tell the fiber bundle data structures that some grid may be
a possible source of data for another grid:

bool EstablishGridSource (Grid&Dest, const RefPtr<ChartBase>&myChart, Grid&Source);
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C++ API: Evaluation, Coordinate Transformation and Interpolation Having set up all possible
evaluation and transformation rules, it is then possible to query the Bundle Object to provide a certain
field on a certain grid in a certain chart for a certain physical time. It is up to the implementation to
internally find a coordinate system that allows timelike interpolation (if required) and some grid objects,
that contains appropriate source data bracketing the requested physical time. This “GainField()” is
one of the highest-level procedures:

RefPtr<VertexArray t> GainField(Bundle&B,
const GridIdentifier &geometry grid,
const GridIdentifier &data grid,
const GridIdentifier &fieldname,
const RefPtr<ChartBase>&WhichChart,
double&t, double deltaT,
RefPtr<Grid>&DestGrid,
RefPtr<Slice>∗GridSlice,
const InterpolationOptions t &IOpts);

Here the “data grid” parameter is used to establish a “grid source” for some yet unknown time steps.
The “geometry grid” parameter is used to find some destination grid at some unknown time slice,
too. The result is a grid object with positional information interpolated from the “geometry grid”
evolution carrying a data field which is interpolated from the “data grid” evolution and evaluated on
the appropriate “geometry grid”.

Using the Grid Abstractions

When working with the fiber bundle model, its available data structures and possible operations, the
following recipe can be used to formulate a given algorithm in this context. It is not claimed that it can
be applied to an arbitrary type of problems or task, but it can be used for a large class and enables strong
reusability of code and concepts. Some examples are given in more detail in section 4.3.3.

• Determine what is the input and output of some algorithm:

– Can the input be formulated in terms of grid objects?

– If so, is it a single grid or a group of grids?

– What components of the grid objects are required for the algorithm?

– How many parameters (e.g. chart objects) need to be specified to find these components of a
grid?

The answers to these questions determine the input parameters of an algorithm.

• Determine what is the output of some algorithm:

– Can the output be formulated in terms of a grid object?

– If yes, can the algorithm make use of available grid operations like coordinate transformations,
grid evaluation, grid interpolation or coefficient evaluation? Can it be constructed by grid
operations which require only a subset of the input parameters?

– If no, can it be formulated via Grid Algorithms? Can these Grid Algorithms be separated into
a Topological Iterator and Topological Operator?

The systematic analysis of the answers to these questions open a path for constructing reusable
algorithms. Components of such an algorithm can be used in another context as well with high
probability.

For input and output parameters which can be formulated completely via Grid objects and their com-
ponents, an algorithm can be parameterized via identifiers instead of actual objects. E.g. instead of
specifying a set of Grid objects, also a time range, a grid name and a bundle object can be used. This is
the parameter set that should be exposed to the end-user. A set of identifiers thus form the “words” of
a semantic language in which the end-user formulates his requirements.
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3.2.3 Local and Global Chart Objects

For performing coordinate transitions on a Grid, a chain of transformation rules is required. When a
data representation in a certain chart is requested, this chain is traversed until the data source is found.
Each Grid object is equipped with a set of charts, each of them (optionally) providing transformation
rules to other charts. This set of chart objects is called the “Grid Atlas”, whereby each transformation
rule might be limited (e.g. via an index range or set of valid indices) to a certain subdomain of the
entire Grid. Consecutive coordinate transformations correspond to a path through the Grid atlas. Given
just the endpoints of such a transformation chain, the transformation path is not unique if there exist
many bijective transformation rules. Strictly mathematically, this is not important, because all true
coordinate transformations commute. However, if we treat general grid operations (def. 71), e.g. grid
interpolation, through the same interface as coordinate transformation, this commutativity is lost. For
instance, consider data are given in a source chart at time steps T = 4.0 and T = 6.0. Data are requested
in a destination chart at an intermediate time step T = 5.0. This can be achieved by first performing a
chart transition at the time slices when data exist, and then interpolating these to the requested time:

Rsrc(T = 4.0) Rsrc(T = 6.0)

chart transition



y



ychart transition

Rdst(T = 4.0)
interp.−−−−→ Rdst(T = 5.0)

interp.←−−−− Rdst(T = 6.0)

Alternatively the temporal interpolation may be performed first in the source chart, and then the inter-
polated result is transformed into the destination chart:

Rsrc(T = 4.0)
interp.−−−−→ Rsrc(T = 5.0)

interp.←−−−− Rsrc(T = 6.0)

chart transition
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Rdst(T = 4.0) Rdst(T = 5.0) Rdst(T = 6.0)

These two variants do not commute in general (practical example given in A.1.3). It is thus necessary to
label a certain path of data transformations. Therefore we introduce “local” and “global” chart objects:
A certain chart object is part of a single Grid (but it may be shared among many Grid’s). The set of all
such chart objects constitutes the “local charts”. In order to trace a certain coordinate system through
various grids and time slices, a common chart identifier is required to define compatibility of local charts.
This chart identifier constitutes a “global chart” and is related to many grids. A list of global charts is
stored in Bundle objects and called a “Bundle Atlas”. It allows to detect which charts may be used for
data representations. However, a certain Grid object might not be able to support a specific global chart.
Also, a Grid atlas may contain charts which are not contained in the Bundle atlas, meaning that these
charts are for internal usage withing this Grid object only and should not be exposed to the user.

The distinction among local and global charts allows to specify which of the above interpolation
methods is to be used: temporal interpolation (in general: Grid interpolation) is permitted for two
representation groups if their local chart object (their representer object) is identical. Otherwise, temporal
interpolation may not be performed in this chart, and intermediate time steps must be computed via
chart transitions from compatible representations.

Chart Objects and Transformation Rules

Local chart objects serve as an “anchor” for Representation objects, i.e. they define its meaning, the
domain of a R̃epresentation object. Each of them provides a set of transformation rules, which are
described by Transformation objects. For n charts there need to be n2 Transformation objects in
general, but some transformation rules might be omitted due to a limited domain of a chart or numerical
instabilities of certain transitions (e.g. due to coordinate singularities).

Each Transformation object, which handles the transition from a source chart {xµ} to a destination
chart {xµ̄}, must be able to provide

• a set of destination coordinate numbers {xµ̄} for a given set of coordinates {xµ},

• a transformation matrix αµ
µ̄ for lower indices and

• a transformation matrix αµ̄
µ for upper indices.
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This information is sufficient to compute the chart transition of arbitrary tensor fields according to (2.22).
Geometric objects with known non-tensorial transformation rules like the Christoffel symbols (2.36) can
be transformed as well. The specification of one transformation matrix is sufficient, because the other one
can be computed numerically via matrix inversion or by copying (or sharing) the numerical values from
the inverse transformation rule. In practice it might be preferable to avoid such inversion rules because
of numerical instabilities. Transformation rules can be specified in several ways:

1. Intrinsically known transformation rules, e.g. from polar to cartesian coordinates and vice versa;
they need to be built into the implementation and are selected via keywords or enumeration types.
Such Transformation objects don’t require any memory storage (except the minimal keyword)
and provide arbitrary resolution, but are limited to a-priori knowledge of explicit transformation
rules. Typical examples are transitions from polar to cartesian coordinates and vice versa.

2. Analytical transformation rules, which are evaluated from expression trees, and need to be parsed
from some input format.

3. Per-point specification of transformation matrices: coordinate values and transformation matrices
are specified as explicit numbers for each point of the vertices of a grid.

4. Coordinate projections: as an extension of the mathematical requirement of bijective transformation
rules, also the operation of coordinate projections can be casted as a non-invertible transformation
rule, e.g. the projection on a sphere:

prspherical : R
3 −→ S

2 (3.7)

{r, ϑ, ϕ} 7−→ {ϑ, ϕ} (3.8)

The according transformation matrices are not invertible. Such transformation rules allow to in-
spect three-dimensional data e.g. on a two-dimensional sphere by just requesting cartesian data in
{x, y, z} coordinates in {ϑ, ϕ} spherical coordinates (the transition {x, y, z} → {r, ϑ, ϕ} is performed
internally as an intermediate step when requesting data in {ϑ, ϕ} coordinates).

5. Coordinate Fields: As the inverse operation of coordinate projections, a fiber field can be specified
to be used as a new coordinate. E.g. a transformation object may specify to use a scalar field
named “R” given on a spherical surface with coordinates {ϑ, ϕ} as a new radial coordinate. We
thus get a representation of the surface in polar coordinates

Coordinate Field “R” : S
2 × R −→ R

3 (3.9)

({ϑ, ϕ}, R) 7−→ {r, ϑ, ϕ} (3.10)

which may furthermore be transformed implicitly e.g. into cartesian coordinates. A typical appli-
cation example are ray surfaces described by coefficients of spherical harmonics (see also A.2).

6. Grid sources: According to p.87, a transformation rule may also specify another Gridas source
where some data may be retrieved. Since Grid interpolation may only be performed in the same
local chart, the transformation matrix is the identity matrix here and may be omitted. However, the
positional information of the relative representation of the two grids involved may be used to store
interpolation weights, which have a similar (but not identical) purpose as transformation matrices.

Implementing the Atlas

Coordinates Coordinates are an n-tuple of (real-valued) numbers, see def. 17. The most direct way to
cast this information into C++ is a structure definition which

1. exports the dimensional number of the coordinates as an enum constant called dims

2. exports the base type (float, double,. . . ) as a typedef called real

3. provides storage place for the coordinate values under convenient freely definable names

An example is the definition of cartesian coordinates {x, y, z} in R
3:

struct CartesianCoordinates3D
{

enum { dims = 3 };
typedef float real ;
real x, y, z;

};
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Other predefined coordinates are polar coordinates {r, ϑ, ϕ} (coordinates on R
n):

struct PolarCoordinates3D
{

enum { dims = 3 };
typedef double real ;
real r , theta , phi ;

};

For practical reasons, it is convenient to inherit coordinate types from a generic indicable type and to add
some operators to the coordinate types, but these extensions are not relevant for the definition of charts
(next section). An alternative formulation is also to employ type traits template classes for providing the
required information on externally pre-defined types. This variant has the advantage that any existing
coordinate type from an external library can be used, but this implementation detail will not be discussed
here.

Tangential Objects Objects residing in the tangential space are described by a set of components in
their coordinate representation. A certain component is accessed using an “upper” or “lower” index. To
mime this functionality and the safety of mathematical index expressions as known from the Einstein sum
convention, some C++ code should be able to distinguish among upper and lower indexing and detect
wrong code at compile-time. Here, a pair of integer proxy classes are of use. They should allow a mapping
from one index type to its dual type (index raising and index lowering):

template <class Chart> struct LowerIndex;
template <class Chart> struct UpperIndex;

/// Class handling lower indices
template <class Chart>

struct LowerIndex : public IntProxy<Chart>
{

/// The UpperIndex is dual to this one.
typedef UpperIndex<Chart> DualIndex;

/// raise lower index using ˜ Operator
DualIndex operator˜();

};

/// Class handling upper indices
template <class Chart>

struct UpperIndex : public IntProxy<Chart>
{

/// The LowerIndex is dual to this one.
typedef LowerIndex<Chart> DualIndex;

/// lower upper index using ! Operator
DualIndex operator !();

};

An example on how to use these type-safe index classes will be shown on page 92. Additionally, we need
a storage place for the actual data, i.e. an object that may be accessed with indices. This generically
“indicable” object may also provide vector space operations like an addition operator and scalar operation:

template <class Index, class Element>
struct Indicable

{
/// Dimension of the underlying manifold of this Indicable
enum { Dims = Index::dims };
Element elements[Dims];

/// Constant indexing operator
const Element&operator[](const Index&I) const;
/// Scalar multiplication
Indicable operator∗(double B) const;
/// Vector addition
Indicable operator+(const Indicable&B) const;

};
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Note that hereby we assume that the Index class knows about the dimension of its underlying chart and
exports it as an enum type. Tensorial objects may now be defined recursively by instantiating Indicable

objects over other Indicable objects as “elements”, starting from scalar objects (i.e. floating point
types). Examples are given in the next section.

Chart objects A chart {xµ}(def. 17) is implemented via a template that takes the coordinate definition
as its argument:

template <class Coordinates>
class Chart
{

...
};

For a given chart{xµ}, e.g. cartesian coordinates,

typedef Chart<CartesianCoordinates3D> CartesianChart3D;

the instantiation of the chart template induces type definitions like a chart {xµ} induces a basis in the
tangential and co-tangential spaces {∂µ}, {dxµ} (def. 22):

CartesianChart3D::Vector
CartesianChart3D::Covector
CartesianChart3D:: Bilinearform

Tensors of higher rank can be defined recursively by combining elements from Tp(M) and T ∗
p (M) using

the Indicable template class described in the former paragraph together with the index types that are
exported by the chart class as

CartesianChart3D::Upper
CartesianChart3D::Lower

For instance, most common basic tensorial types are constructed (within the chart) as:

typedef Indicable < Upper, real> Vector;
typedef Indicable < Lower, real> Covector;
typedef Indicable < Lower, Covector> Bilinearform;

These types allow vector space and contraction operations (def. 24), e.g.

CartesianChart3D::Vector u,v,w;
CartesianChart3D::Covector U,V,W;
CartesianChart3D:: Bilinearform F;
float a,b,c;

u = a∗v + b∗w; // addition and scalar multiplication on vectors
U = a∗V + b∗W; // addition and scalar multiplication on covectors
a = U∗v; // contraction of vector and covector ( scalar product)
W = F∗u; // contraction of vector and bilinear form
c = v∗F∗u; // applying a 2−form to two vectors

Note that vector space operations are not defined on the coordinates themselves, but just on these
objects residing in the tangential space. The coordinate type might support such operations, but the
chart definitions do not make use of this assumption that the underlying manifold has vector space
structure. This distinction among point coordinates without vector structure and tangential vectors with
vector space operations is unusual within computer graphics, where points in space are usually treated as
vectors (“just three numbers”, see the OpenGL manual for example). However, this distinction results in
cleaner formulations of algorithms and operations, therefore leading to easier generalization of algorithms
to e.g. curved surfaces where the assumption of vector space structure of the base manifold is no longer
valid.

To access the components (def.2.1.1) of an indicable object, the appropriate index type from the chart
has to be used, e.g. vµ = 0.5 for µ = 1:

CartesianChart3D::Vector v;
CartesianChart3D::Upper mu(1);

v[ mu ] = 0.5;

The requirement to use appropriate index types for tensor operations ensures type safety at compile time
and a direct mapping of mathematical expressions to the code, e.g. coding the expression s = g(v, w)
with g a bilinearform, v, w ∈ Tp(M) and s ∈ R, i.e. in a char{xµ} s = vµgµνw

ν , appears as:
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double r = 0;
for(Upper i ; i . valid (); i++)
for(Upper k; k. valid (); k++)
{

r += v[k] ∗ g[!k ][! i ] ∗ w[i ];
}

An advanced implementation might even omit the loop expressions and define an “indexed indicable”
object as its own type (making use of techniques similar to expression templates).

Limitations

1. Symmetry properties of tensors cannot be specified in the current recursive scheme. To optimize
memory usage, e.g. the metric is defined via an own template class adhering to the symmetry and

storing only n(n+1)
2 elements instead of n2, but otherwise behaves like a tensor object.

2. Here, the basic “real” type is propagated from the definition of the initial coordinate to all induced
tensor types. It might be desirable to easily mix “cartesian float metrices” and “cartesian double
metrices”. This can be done via additional template parameters and member templates, but imposes
an n2 problem on all tensorial operations, because the numerical type is left free in such a case and
all possible combinations of numerical types must be supported on all operations. However, this
issue is basically limited by compiler technology.

Coordinate Transformations Coordinate transformations are formulated via Transformation ob-
jects, similar to the Transition object in Butler’s concept (p.41). They implement the coordinate
transition rules {xµ̄}({xµ}), the transition matrices αµ̄

µ and their inverse τµ
µ̄ (see also p.16):

template <class SourceChart, class DestChart>
struct Transformation : TransformationBase<SourceChart>
{

typedef typename SourceChart::Point SourceChartPoint;
typedef typename DestChart::Point DestChartPoint;

typedef typename DestChart::Upper DestUpperIndex;
typedef typename DestChart::Lower DestLowerIndex;

typedef typename SourceChart::Upper SourceUpperIndex;
typedef typename SourceChart::Lower SourceLowerIndex;

typedef typename SourceChart::real SourceType;
typedef typename DestChart::real DestType;

// {xµ̄}({xµ})
DestChartPoint operator()(const coord index t&i, const SourceChartPoint&P);

// αµ̄
µ ≡ ∂xµ̄

∂xµ ({xµ})
typedef Indicable < DestUpperIndex, Indicable< SourceLowerIndex, SourceType> > Alpha;

// τ
µ
µ̄ ≡ ∂xµ

∂xµ̄ ({xµ})
typedef Indicable < SourceUpperIndex, Indicable< DestLowerIndex, DestType> > Tau;

// Check for singularity during transformations . If one occurs , return false .
bool computeAlpha(const coord index t&i, Alpha&alpha, const SourceChartPoint&P);
// Check for singularity during transformations . If one occurs , return false .
bool computeTau(const coord index t&i, Tau&tau, const SourceChartPoint&P);

};

Transformation rules may be given analytically and specialized for certain chart types, e.g. for implement-
ing the known transformation rule among cartesian and polar charts. In this case, the Transformation ob-
ject will be independent from a Grid object and the last parameter SourceChartPoint P is used to
determine the coordinate location of the source point. In contrast, when a transformation rule is given
explicitly at each point of a Grid object via numerical values, then the first parameter coord index t

i will be used to retrieve the Grid-dependent in the discrete set of transformation matrices and point
coordinates as provided by the Grid object.
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The availability of the transformation matrix allows to compute the chart transition for every tensorial
object. It may be defined recursively by providing a transformation rule for a single index like in the
expression

T µ̄...
... = αµ

µ̄T
µ...
...

In C++ this transformation rule is implemented via a transformation rule that operates on an arbitrary
object that can be indiced with an upper index:

template <class Tensor, class SourceChart, class DestChart>
Indicable <typename DestChart::UpperIndex, Tensor>
mul(const typename Transformation<SourceChart,DestChart>::Alpha&a,

const Indicable <typename SourceChart::UpperIndex, Tensor>&T )
{
Indicable <typename DestChart::UpperIndex, Tensor> Tb;

for(typename DestChart::UpperIndex mb; mb.valid(); mb++)
{

Tensor&Tmb = Tb[mb];
Tmb = 0;
for(typename SourceChart::UpperIndex m; m.valid(); m++)
{

Tmb += a[mb][m] ∗ T[m] ;
}

}
return Tb;

}

Technically, this code just performs a matrix multiplication. Semantically, this code is type-safe and
ensures correct indexing. Further optimizations may include using expression templates, but this option
has not been implemented in the current version. As a notable limitation, there is no automatic way to
implement transformation rules for non-tensorial objects yet; these must be specified manually.

Global Chart Objects The concept of “local” vs. “global” charts allows to distinguish among two
levels of compatibility among Representation object:

• “weak” compatibility: two Representation objects refer to the same coordinate system

• “strong” compatibility: data may be interpolated among two Representation objects

In an implementation, a local chart is an object carrying Transformation objects as described before. If
two Representation objects refer to the same Chart object (i.e. their “Representer” is identical), they
are regarded as “strongly” compatible and data interpolations may be performed. Each such Chart object
is now equipped with a reference to a global chart object, which is basically just some textual description
providing some information for the end-user. If two Representation objects refer to different Chart ob-
jects with the same global chart identifier, then they are treated as “weakly” compatible, i.e. data
must not be interpolated among them. An interpolation request on two weakly compatible representa-
tions must traverse all possible coordinate transformation rules on both representations until a common
Chart object is found. Here, data may be interpolated, and (possibly interpolated) transformation rules
must be employed to yield the requested result on the interpolated grid. Since a data transformation
might be grid interpolation again, a simple request might thus initiate a complex computational engine
involving many operations.
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Computing Coordinates

In many situations the spatial coordinates of some Grid object are given procedurally based on a set of
coefficients describing the linear combination of basis functions, for instance fourier transformation data
(with data given in fourier space), multispectral expansions (based on spherical harmonics), NURBS
(non-uniform rational B-splines) and chebychev coefficients. Common to these data sets is that the
actual spatial data can be computed with arbitrary geometrical resolution from a relatively small data
set of basis function coefficients. An application example is given in A.1.3, where the temporal evolution
of a surface is given as an expansion of spherical harmonic functions:

R(t;ϑ, ϕ) =
∑

l,m

Alm(t)Ylm(ϑ, ϕ) (3.11)

Hereby Alm(t) are the time-dependent coefficients as they are output by the numerical algorithm,
Ylm(ϑ, ϕ) are the usual spherical harmonics and R is the radial distance of a point of the surface as
measured from some origin (which is also a free parameter and part of the surface description). Such a
surface is also called a ray surface, since each point is associated uniquely with a ray trough the origin.
Note that a straightforward implementation of (3.11) based on the recursive mathematical definitions
of Ylm via Legendre polynomials is relatively slow and, more serious, numerically instable. Section A.2
reviews and extends a numerically stable and fast algorithm presented originally by Deuflhard [Deu76].

Expansion coefficients are neither integer data related to cells or cell complexes, nor spatial data, so
the question arises where to store them in the fiber bundle data model. Let us remember the concept
of index spaces (see def. 64) and index depth, def. 68, for this purpose. Index depth 0 is related to
discrete points in space, index depth 1 are aggregates of elements of index depth 0 (“cells”, “edges”,
“faces”, . . . ). So index depth 1 is only defined and makes sense if elements of index depth 0 exist. An
index space of depth 0 can “live” without an index space of depth 1 (corresponding to a zero-dimensional
set of points), but not vice versa. In this sense, index depth 0 “bears” index depth 1. Here, we have a
similar situation physical coordinate locations are not available without the expansion coefficients: the
expansion coefficients “bear” the physical coordinate locations. It is therefore quite canonical to extend
the concept of index depth to negative numbers and let an “index depth −1” indicate that data of this
kind are designed for computing coordinate locations.

A Topology object with index depth−1 is called a “Coefficient Topology”. It describes the topological
space of coefficients which serve to compute spatial coordinates.

Index Depth -1 ←−−−− Grid −−−−→ Index Depth 0


y



y

Coefficients Topological Spaces Points


y



y

Alm ←−−−− [SphericalChart] −−−−→ R(t;ϑ, ϕ)

(3.12)

A Coefficient Topology may carry multiple representations for different coordinate systems as well.
Each of these may provide different coefficients, for instance, think about multipole expansions around
different locations in space.

Coefficient Evaluation and Geometry sources Beside the coefficients (e.g. the Alm from (3.11)),
we also need to know the appropriate basis functions (e.g. Ylm(ϑ, ϕ) from (3.11)) to compute final
coordinate values. These basis functions need to be known on spatial locations, i.e. on some pre-existing
geometry. We can provide them as a fiber field on an existing Grid object. This “geometry source” grid
can

• be a constant object over multiple time slices, such that the basis functions need to be evaluated
only once (a possibly computationally expensive operation), or

• be an object which is interactively modified by the user, such that the resolution of the resulting
coefficient expansion is adjustable to the user’s need, or

• one of many possible triangulations (e.g. a sphere with regular or triangular cells), or

• provide stored basis functions on the grid, if the application does not have means to evaluate them
procedurally (which of course limits the spatial resolution then).
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The computation of coordinates from some given coefficients can be formulated as a Grid Operation
(def. 71), which maps two input grids, the “coefficient grid” and the “geometry source grid” to the
“geometry grid”:

Coefficient Grid ←−−−− Input Grids −−−−→ Geometry Source


y



y

Coefficient Topology ’R’ Topological Spaces Points


y



y

[Destination Chart] Representations [Positional Chart]


y



y

Alm Positions {ϑ, ϕ}


y

Field ′R′ : Ylm(ϑ, ϕ)

(3.13)

We call this Grid operation a “Coefficient Evaluation”. It takes two input grids and two charts
as parameters: the “destination chart”, which specifies on which coordinate systems the coefficients are
valid, and the “positional chart”, which specifies the coordinate system where the geometry is given. The
“Coefficient Evaluation” will then need to find coincident coefficients topologies on the coefficient grid
and a corresponding field on the geometry source grid (e.g. by using identical names, “R” in (3.13)) in
the respective charts. The newly computed spatial information will be put onto the destination chart’s
representation of the new (or already existing) grid as a field with the same name (“R” in this example):

Output Grid −−−−→ Geometry Grid


y

Topological Spaces Points


y

Representations [Destination Chart]


y

Positions {ϑ, ϕ}


y

Field ′R′ =
∑

l,m

Alm(t)Ylm(ϑ, ϕ)

(3.14)

It is then left to a coordinate transformation object to interpret the resulting field as a coordinate
field according to 5 on p.90. As all these operations can be implemented to happen on demand, the
request for a Grid’s coordinate representation in some cartesian coordinate system (e.g. for visualization
purposes) may therefore initiate a Coefficient Evaluation through the mechanism of chained coordinate
transformation rules.

A more complex example where the surface coordinates {ϑ, ϕ} are computed from given coefficients as
well is given in A.1.3. The availability of this functionality in the implementation enabled the researchers
at the Max-Planck-Institute for Gravitational Physics to develop and test a new method of finding
embedding diagrams of black hole apparent horizons, as presented by M.Bondarescu, M.Alcubierre and
E.Seidel [BAS02]. On the visualization side, it involved many Coefficient Evaluations for a single Grid.
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3.3 Summary

3.3.1 Overview of Supported Features

The ultimate goal of this fiber bundle data model is to achieve an abstraction layer to describe data
objects and operations on them in a powerful manner with high re-usability. Especially for the purpose
of tensor field visualization, where many non-trivial operations happen just in the tangential space Tp(M)
of a manifold M , the demand is high to unify such operations instead of re-implementing them for every
different layout of the base manifold M . The two main abstractions on data objects to achieve are

• the abstraction of objects from their numerical representation in a specific coordinate system - the
fiber bundle model achieves this through multiple representations on various topological spaces, and
in particularly by employing “field identifiers” as abstract handles instead of actual data objects,
and

• the abstraction from the underlying discretization scheme of the manifold - the fiber bundle data
model achieves this through “grid identifiers”, which allow to specify a certain layout without
knowledge of its internal discretization structure.

On the procedural side, the fiber bundle data model defines the concepts of Grid algorithms (def. 70)
and Grid operations (def. 71):

• For Grid algorithms, it provides a systematic way for developing and implementing algorithms on
various manifold discretization schemes with high re-usability of algorithmic components. The key
concepts here are the separation of Grid algorithms into “Topological Operators” and “Topological
Iterators”.

• For Grid operations, the model provides a unification of coordinate transformations, grid interpola-
tions, grid evaluations and coefficient evaluations. All these operations are hidden behind a common
interface to query data fields in a certain data representation. It employs an engine to traverse a
chain of generalized data transformation rules, which is parameterized by means of “global” and
“local” chart objects.

In contrast to alternative data models and their implementations, the fiber bundle model intrinsically
supports the following features right from beginning:

• series of consecutive grids (Grid evolutions)

• connectivity information across time steps

• relative information among Grid objects, e.g. interpolation weights

• various discretization schemes via separate topological properties

• non-manifolds as base spaces

• multiple coordinate systems and multiple representations of data in their respective charts

• abstraction level to allow coordinate-free formulations

• non-vector spaces as fibers

• cell complexes and grouping of Grid cells

• data fields (fibers) may reside not only on elements of the base space (points or vertices), but also
on cells, edges or lines, faces, cell complexes (patches), etc.

• a recipe for the construction of a large class of generic, reusable Grid algorithms (e.g. some
visualization method)

• coordinate transformations and chains of chart transitions

• support for temporal interpolation

• multi-patch data via locally bounded Representations

• structured and unstructured grid types, such as:
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– particle systems, see A.1.1 and A.1.1

– triangular surfaces, see A.1.2

– regular surfaces, see A.1.2

– uniform grids, see A.1.2

– regular grids, see A.1.2

– adaptive hierarchical meshes (AMR data), see A.1.2

– curvilinear grids

– tetrahedral grids

– unstructured grid

The basic concept is to avoid implicit assumptions about a data set as much as possible and to specify
its properties in detail (possibly procedurally for performance issues). The data model is casted into a
tree-like structure of five hierarchy levels, called the Bundle, Slice, Grid, Topology and Representation
levels. Instead of dealing with actual data objects, it employs abstract identifiers referring to data or
a group of data. These identifiers stand for the semantic information that is represented by the data
they refer to. It is claimed that the usage of textual descriptions for identifiers is an indicator of the
incompleteness of a data model, because textual descriptions are interpreted by a human user, not by the
data model. Therefore these identifiers are casted into data structures themselves as far as possible, but
some open issues remain. The two identifiers for Grid and Field objects are left open a textual identifiers
intentionally, as these are considered to contain semantic information beyond the mathematical capability
of the fiber bundle model. These are thus the only identifiers that are exposed to the end-user.

3.3.2 Comparison with Alternative Approaches

Having presented the newly proposed data model, we may inspect its relationship to three exemplary
implementations. All these three selected approaches can be found to be a subset of the new data model.
The closest model is provided by the widely spread and successful DX model, but the fiber bundle model
discussed here adds additional structure such as the concept of index spaces with multiple representations.

Butler’s Vector Bundle Prototype

Although fundamental differences exist as compared to Butler’s visionary original approach – see diagram
(3.4) on p.69 in contrast to (2.46) on p.39, we can seek for coherences to the terms defined in 2.2.2:

1. Butler’s “Fiber Constructors” correspond to the type information of the fibers; their implementation
is the ArrayBase class from 3.1.1.

2. Butler’s “Base Constructors” correspond to the Neighborhood component in the Topology objects
and the set of all Position arrays in the Representation objects which are contained in this
Topology object.

3. Butler’s “Bundle Constructors” correspond to the Topology objects, which carry the base space
and its fibers.

4. Butler’s “Section Constructors” correspond to the Array classes from 3.1.1, or generally, any Array

object that may provide actual data.

Procedures on the data model are called “bundle mappings” in Butler’s approach. He does not distinguish
between operations within a Grid object and operations among Grid object, but the corresponding
operations are:

1. Bundle restriction: adding or removing Grid objects

2. Subbundle: adding or removing Fields

3. Boolean operations: grouping of Grid objects; this is problematic to implement, because the topo-
logical spaces of grid objects might be quite different and it might not even be reasonable to perform
boolean operations among grid objects with different topological properties.

4. Slicing: Selecting a subset of the vertex-related information of a Grid or interpolating a Grid onto
another Grid of lower dimension.
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5. Stacking: Merging Grid objects; similar to boolean operation, it makes only sense for a certain
family of Grid objects with sufficient “similarity”.

6. Component projection: Has no conceptual correspondence, because it is a coordinate-dependent
operation. An implementation might still provide such a functionality on the risk of the user.

7. Component direct product: only tensor operations or covariant expressions are supported.

Summarizing, Butler’s model is a good source of inspiration, but it completely lacks any description
of important grid features others than vertices. Also, it does not support generic transformation rules
on tensorial objects. In direct comparison with the data model discussed here, it is a subset, but also
provides information like neighborhood information on the tangential space which is not used in practice.

Data Explorer Model

Data Explorer (DX) model knows about the concept of a a Grid object and was actually one of the sources
of inspiration for developing this model. It also uses a component model and describes a Grid object by
a set of arrays:

P . . . . Positions (contains coordinates for each point)
N . . . . . Neighborhood (indices to neighboring points)
T . . . . . . . . . . . . . .Tangential data (data on each point)
C . . . . . . . . . . Connectivity (point indices for each cell)
E . . . . . . . . . . Edges (indices of two consecutive points)
F . . . Faces (series of point indices forming some area)

There may be additional arrays defining extra data referring to existing arrays (e.g. a set of faces), and
additional arrays referring to elements of other arrays (e.g. a collection of sets of faces). This functionality
can be used to construct cell complexes of arbitrary size and complexity and is therefore similar to this
model. However, there is no further grouping or hierarchical relationship among these arrays in DX.
In contrast, in the data model presented here the concept of “index spaces” is introduced, which allows
a cleaner grouping of Grid components. Using the definitions of an array (def. 64) and compatibility
among arrays (def. 67), we may inspect the DX components to find such relations. It is easy to see that
arrays P , N and T are compatible:

P : I0 → R
n

N : I0 → I0

T : I0 → T (Rn)

Their index space directly refers to vertices (def. 2.2.1), i.e. an index space of depth 0 according to
def. 68. Arrays C, E and F are mappings into the power set of this index space P(I0), and thus have
an index depth 1. C, E and F are not compatible, but compatible arrays with extra data can be added
(i.e. when defining data on connectivity elements, edges or faces). However, this compatibility of arrays
and semantic grouping is not obvious in the DX data model. Arrays of arbitrarily higher index depth
may be added to a grid, but there is no such concept as a Topology or Representation group, all data
arrays are stored plain within a Grid object . Their semantics is casted only into the textual description
of an array. Summarizing, the DX data model is an excellent approach and superior to alternative
implementations concentrating on just specific data and grid types. However, in direct comparison with
the concepts as conceived here, the following functionalities are missing:

- no concept of index spaces and the programming safety induced by the concept of index depth

- no concept of topological spaces and mapping among topological spaces (“relative representations”)

- no support of tangential objects with covariant and contravariant indexing (tensor fields are just
specified by their rank, but not via upper and lower indexing), and the corresponding formulation
of expressions similar to the Einstein sum convention

- no automated transformation rules and transformation paths (concept of chart objects, local and
global charts), together with an high-level interface of unifying these with grid interpolation, grid
evaluation and coefficient evaluation

- no support for coordinate-free formulations
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POOMA

POOMA has been designed for numerical applications, where data are created from some initial source,
like starting parameters or an original data set. The operations which need to be performed on this data
set are known yet at program start and the task of POOMA is to execute these operations on the fastest
way. This is a huge conceptual difference to an (interactive) visualization process, where unexpected
interaction with some user may lead to previously unknown combination of data types. Consequently,
the set of possible data sets and operations is not known at compile-time in an interactive visualization
environment, whereas a numerical simulation may concentrate on a single set of possible data layout.
As a result, data objects in POOMA are fixed at compile-time and static. It employs programming
techniques from C++ template metaprograms to achieve maximal performance. The implementation of
this fiber bundle employs similar technique, but faces an np problem when trying to support different n
grid types during operations p grid objects. This problem is reduced by formulating grid objects through
grid components, such that a huge amount of grid types can be expressed through just few different types
of component layouts (e.g. procedural arrays vs. explicit storage).

As POOMA is an actively developed up-to-date application, we will discuss its concepts in relation
to the fiber bundle model in more detail:

• Dynamic vs. Static Construction: A data model implementation for visualization requires
more dynamic capabilities, thus allowing at a certain point to change the properties of objects at
runtime.

• Collection of objects vs. object hierarchy: POOMA does not support tangential objects and
coordinate transformations with associated tensor calculus and/or covariance concepts. Coordinate-
free programming is thus not supported by POOMA.

• Pointwise operators on regular meshes vs. Topological Iterators and Operators: POOMA
allows to define point-wise user functions as templates that may be instantiated over regular arrays.
The fiber bundle model allows to implement and use similar concepts to build visualization algo-
rithms as point-wise instantiations over various grid types via topological operators and iterators
(3.2.2), but regular grids are just a special case. Moreover, algorithms can be generalized to topo-
logical spaces of higher index depth, i.e. the same algorithm can be used (“instantiated”) cell-wise,
edge-wise, face-wise etc. in addition to just point-wise operations.

• Explicit vs. recursive handling of dimensionality: The C++ implementation of the fiber
bundle model defines multidimensional algorithms via recursion (see 3.1.2), while POOMA handles
dimensions explicitly per dimension.

• Arrays as Fiber Bundles vs. Arrays as discrete maps: An array in POOMA is called a
“multi-element data structure”, each of whose elements is specified by one or more indices; they are
(“small”) fiber bundles each by itself. In the fiber bundle model, the indices of an array do not carry
any meaning by themselves; their only purpose is to uniquely access the array’s elements. They
neither impose a topological structure by itself nor require some numerical ordering; any additional
information about the dimensionality of such a data set is stored somewhere else. This allows many
fields to share the same storage layout, like neighborhood and connectivity information.

• Fields with geometrical information vs. geometrical information with fields: A Fields
is an extension of an array in POOMA which may provide geometry information. In contrast,
Fiber Fields are not represented by single arrays but by a set of arrays, each of them providing a
representation of the field concept. Geometrical information is shared among multiple Fields. It
may also co-exist in various representations.

• Absolute vs. relative (coordinate-specific) properties: In POOMA, a “uniform mesh” is a
certain class definition, which is then bound to a certain coordinate system. In the Fiber Bundle
model, the uniformity is just the appearance of a regular grid in this certain chart, but other (non-
uniform, but still regular) views may co-exist at the same time on the same grid object (an example
is given in 4.3.3 when discussing the volume rendering of “lazarus data” sets).

• Independent objects vs. object management: In POOMA, objects are constructed inde-
pendently. In the Fiber Bundle model, all such objects are inserted into a hierarchy descending
from a central root node, the “Bundle” object. Relationships among objects are part of the fiber
bundle hierarchy (formulated via relative representations), whereas POOMA does not support the
formulation and storage of such relationships.
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POOMA is surely one of the most advanced implementations to allow the specification of grid opera-
tions independent from its actual layout. It employs very modern techniques and is optimized to achieve
high performance. Some concepts of POOMA are close to those of the Fiber Bundle model. However,
from the viewpoint of the Fiber Bundle, POOMA only implements a subset of the desired functional-
ity, although by very impressive technical means. It would certainly be possible to use POOMA as the
implementation of various low-level tasks with only minor overhead. Such an interface has not been
implemented, because at the time when the implementation process of this data model started, POOMA
was not yet in a mature state. Another reason is the military background of POOMA, and it is highly
questionable from the ethical point of view if one really wants to work with code that was originally
developed and used for the design of nuclear weapons.

3.3.3 Correlation Tables

Each data model has its own terms for describing its concepts. The basic objects in

• Butler’s Vector Bundle are point Sets, topological spaces, manifolds, vectorspaces, charts and chart
transition functions on the manifold and vectorspaces, vectorbundles, and vectorbundle Sections;

• DX are fields, arrays, components, groups, multigrid groups, composite field groups, series groups;

• POOMA are fields, meshes, arrays, and layouts;

• the Fiber Bundle model are Fields, Representations, Topologies, Grids, Slices, Bundles.

We may roughly demonstrate the correlations among the mathematical terms and the objects in the
Fiber Bundle data model in the following table:

Data Model Term Mathematical Notation Mathematical Description
Field vµ∂µ stalk, section or field
Representation R

n coordinate representations
Topology X topological space
Chart {xµ} map to coordinate space
Transformation {xµ̄}◦{xµ}, αµ̄

µ transformation rules
Grid Gi = (X, {xµ}) manifold
Slice

⋃

i

Gi time slice

Bundle R×⋃

i

Gi fiber bundle

This mapping is not exact, since e.g. a Grid object can also be a non-manifold, but in most cases it will
be a manifold.

The following table will give an overview of the relevant terms in each data model and its raw
equivalent within the other data models. An empty entry means that the corresponding concept exists
in the respective model, but it cannot be described by a single term and does not have a 1:1 mapping.
Dashes “—” mean that the respective concept is not supported by the other model at all, although there
might be hand-crafted workarounds to formulate it.

Data Model Term Butler’s Vector Bundle DX POOMA
Field VectorBundleSection component array
Representation positions mesh
Topology TopologicalSpace neighborhood array
Chart Chart — —
Transformation Transition — —
Grid Manifold field field
Slice group
Bundle series

The correlation is only approximative, e.g. a POOMA mesh only corresponds to the positional component
of a Representation object. Also, POOMA does not support the concept of multiple representations, so
the terms are not comparable directly. On the other side, a series group in DX must be constructed by
equivalent objects, while in the Fiber Bundle model a “Grid evolution” may be constructed from mutating
objects, e.g. a sequence of isosurfaces with evolving connectivity. Of course, timelike interpolation is not
straightforward in such cases and requires future and past cone arrays available for consecutive grid objects
(see 3.1.2). If we inspect the different approaches considered here more closely in their relationship to
the mathematical definition of a fiber bundle, def. 50, we find the following coincidences:
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Math. term Fiber Bundle Butler’s Vector Bundle DX POOMA
base space Neighborhood, multiple

Positions
Manifold neighborhood,

positions
mesh

fiber space Fields in multiple Repre-
sentations

VectorBundle data arrays array

total space Topology object VectorBundleSection field field

While the concept of a mathematical fiber bundle can be found in all cases, only the Fiber Bundle model
described here and Butler’s prototype support multiple representations of the same fiber in different
charts. The Fiber Bundle model furthermore generalizes the specification of topological relationships
among topological spaces in a manner similar to a chart and thus constitutes the most general non-trivial
hull of all these approaches.



Chapter 4

Rendering Algorithms

The main concentration of this work is on symmetric 3 × 3 tensors, i.e. metric fields from 2.1.1. This
includes also the ability to directly visualize other 3 × 3 tensors like the extrinsic curvature K or the
Riemann tensor R, although the given interpretations of the visualization methods might not be physically
appropriate for them. The idea is to start with discrete visualization methods, to apply them to large
datasets and to modify them until they are suitable for displaying global structures and properties of the
tensor field.

4.1 Vector Field Visualization

Before investigating tensor field visualization that involves many quantities per point (where “point” does
not necessarily coincidence with the term “vertices of a grid”, but also arbitrary locations in space), we
will review the process of studying vector fields, which can be seen as “simple” tensor fields that use only
three quantities per point. Visualization of vector fields has been topic of visualization efforts historically
more than tensor fields. Its issues have extensively been discussed by D.Stalling [Sta98]. It might give
inspiration how to do tackle the task of tensor field visualization by generalization of the methods to
incorporate at least twice as much quantities per point for a tensor field.

Standard vector field visualization methods usually think of vectors as tangential vectors. However,
this is not the only kind of rank-1 tensor, as there also are covectors. By identify vectors and covectors via
musical isomorphisms in flat space (see 2.1.1), usually covectors are not considered separately. Since we
think in flat space, this does not harm for visualization purposes because we can intuitively map vectors
to covectors. However, from the view point of differential geometry there is a distinction among vectors
and covectors, and their identification implies the existence of an additional structure beyond the vector
field, i.e. a metric tensor field on the underlying space which determines the musical isomorphism. Thus
it makes sense to think about visualization methods which do not imply such an additional structure.

4.1.1 Vectors

Icons As we know from school, “a vector is an arrow”. Thus a straightforward visualization technique
is to display arrows at each point in space where a (discrete) vector field is given. This technique is still
the best for “debugging” vector field data and pointwise inspection. However, for getting an intuitive
overview of a complete dataset, this technique is insufficient, because too many vector arrows are confusing
and hide others laying in the same view direction (known as the “view occlusion” problem). Introducing
thresholds (display only vectors which fulfill some certain condition, like their magnitude in a given range)
or hyperslabbing (display vectors only in a plane instead of the full volume) helps, but does not solve the
problem.

For pointwise inspection also of the local derivatives of a vector field the vanWijk-Glyph has been
developed; it encodes quantities like the shear, curvature and something more of the vector field at a
given point. However, it makes no sense to render a complete three-dimensional volume based on such
glyphs, which are optimized for point-wise inspection only.

Integrating Methods An integral line q ⊂M on a vector field v ∈ T (M) within a spacetime manifold
M with starting event q0 ∈M is defined via

q̇ ≡ d

ds
q(s) = v(q(s)) with q(0) = q0 . (4.1)
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Integral lines are also called trajectories, tangent curves1 or path lines. They describe the path of a point-
like particle in the flow of a vector field. In coordinates, q describes spatial and temporal information;
usually only three-dimensional, but possibly time-dependent (non-stationary) vector fields are considered.
Then equation (4.1) reduces to three equations

q̇a(s) = va(qt(s), q1(s), q2(s), q3(s)) , qt(s) = s (4.2)

whereby a = 1, 2, 3 describes spatial coordinates. However, when solving (4.2) by numerical methods, it
is preferable to go back to (4.1) to get an autonomous system of ordinary differential equations which
can be solved using Runge-Kutta methods[DB02].

Sometimes it is also of interest to investigate a vector field at some instance of time. We can do so
by treating the vector field as being stationary, i.e.

q̇a(s) = va(qt(0), q1(s), q2(s), q3(s)) , qt(s) = qt(0)

yields lines called field lines or stream lines (see also [Sta98] for a detailed discussion of integration
methods and Zoeckler et.al. [ZSH96] for a rendering technique). Stream lines correspond to the flow
direction of many particles which are spread around in the volume of the vector field. Path lines and
stream lines are both one-dimensional manifolds; they can’t intersect themselves, since at each point their
direction is uniquely determined by the given vector field (in contrast to e.g. geodesics). A streamline
is a static object, all of its points belong to the same time slice, whereas a path line is constructed by
points at different times. A path line can be seen as the projection of a streamline within an time-
dependent n-dimensional manifold onto an n − 1 dimensional submanifold time slice (a path-line is the
three-dimensional “image” of a four-dimensional streamline) – this projection may intersect itself.

Beneath the inspection of lines that start from a single event q0 we can also investigate the behavior
of groups of lines that start from a set of events, e.g. some “initial seed” line q0(τ) : I →M with I ⊂ R.
The integral surface S ⊂ M within a vector field v ∈ T (M) with initial seed line q0 is then constructed
from all integral lines that pass through an event on this initial seed line:

S = {q : R→M, q̇(s) = v(q(s)), q(0) = q0(τ)}
It contains a natural parametrization S(s, τ) by the initial seed parameter τ and the integration length

s, and carries an induced natural coordinate basis of tangential vectors {~∂τ , ~∂s}, whereby ~∂s ≡ q̇ = v.
The projection of an integral surface onto a static time slice Σ with dim(Σ) = dim(M) − 1 does not
necessarily yield a manifold: it can self-intersect and therefore its projected natural parameterization
πS(s, τ) : R

2 → Σ does not provide a bijective map Σ→ R
2.

A commonly used choice is to use a timelike initial seed line q0(τ) = (τ, q1, q2, q3) with fixed spatial
coordinates q1, q2, q3 (we can call such a seed line a “location”, since it describes a point in space in-
dependent of time). The resulting integral surface will then be span by a timelike tangential vector ∂t

and a spacelike tangential vector ∂s. For a fixed time coordinate t the projection of the integral surface
into a time slice dt = 0 reveals a line, called a “streak line”. It is formed by the location of all particles
that have passed (or will pass) through a specific point q0(t) at some time t. For stationary vector fields,
integral lines will be independent of time, and so streak lines will coincidence with stream lines.

Another choice is to use a spacelike initial seed line q0(τ) = (q0, q1(τ), q2(τ), q3(τ)). The image of the
seed line under evolution, the line S(s, τ)|s=const is called a “material line” or “time line”. The surface
S is called a stream surface. An improved algorithm for computing a streamsurface based on the original
algorithm by Hultquist [Hul92] was given by Stalling [Sta98].

Sometimes higher dimensional initial seed data are used, revealing surfaces or volumes evolving under
the flow map of the underlying vector field (the geodesic evolution of a volume will be discussed in 4.3.1).

Feature Detection Integrating Methods as in 4.1.1 run into problems if the underlying vector field
becomes zero at some points. Such points are called critical points and can be classified by inspection

of higher-order derivatives, like the eigenvalues/eigenvectors of the Jacobi matrix2 J = ( ∂vi

∂xj ) of a vector
field v. Via case-study of the Jacobi matrix eigenvalues critical points can be categorized [TWHS03] into
topological equivalence relationships like “sinks”, “saddles” and “sources”. Rendering just critical points
with their topologies (i.e. incorporating higher-order derivatives of the vector field) might be sufficient
to visualize a complete vector field in a volume with only very few graphical elements and is thus a good
approach for geometry reduction, facing the problems of view occlusion and rendering speed.

1 Usually visualization literature does not distinguish among the terms “lines”, a set of points (one-dimensional subspace)
q ⊂ M , and “curves”, parameterized one-dimensional maps q(s) : R → M , see def. 20. What is really meant here for
visualization purposes is a line, while a curve is used for the computation and numerical representation of a line.

2 Note that ∂vi

∂xj is a coordinate expression and reveals a tensor only if the Christoffel symbols ∇i
jk = 0 vanish in this

coordinate system, otherwise the covariant derivative (def. 45) would be have to be used for inspection.
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Color Coding A very successful technique for scalar fields is volume rendering, which maps the scalar
value at each grid point to optical parameters like color, intensity, transparency etc. Common graphics
hardware supports volume rendering (straightforward on uniform grids, other grid types requiring more
effort like remapping to uniform grids or subdividing the input grid into a hierarchy of uniform boxes) via
three-dimensional texture maps, such that interactive frame rates can be achieved easily. Better graphics
hardware moreover supports interpolation of the data instead of just interpolation of the colors (known
as the OpenGL colortable extension) and thus is able to display fine resolution details even beyond the
original data resolution.

OpenGL-based volume rendering is able to display four quantities at a point: the red, green, blue
and alpha (α) channel. Scalar field volume rendering usually works indirectly using some colormap to
map a single (data) value to four (color) values. For vector fields, we already have three input values,
such that using a colormap is not desirable and the vector component values can be mapped directly to
colors, known as the color coding technique. Nevertheless we have multiple choices on how to map vector
quantities to colors (we call this map a vector colormap):

• Map (vx, vy, vz) 7→ (r, g, b) and ~v 7→ α = |~v|. This map is straightforward and encodes the magni-
tude of the vector field as intensity, but does not take into account that colors range from 0 to 1
only. Zero-vectors are hidden, so we only see areas of large vector magnitude. Instead, we can also
use a map ~v 7→ α = 1− |~v| which only displays areas of small vector magnitude, thus prominently
displaying critical points instantaneously. The color range can be fixed by using an arcus tangens
function in the map, such that infinite values are mapped to one, vi 7→ ci = 4

π arctan(vi), or by
normalizing the color vector first, vi 7→ ci = vi/|~v|. A power exponent may also be introduced to
allow contrast control.

• In the previous map negative vector components are all rendered black. This is not good, and we
have the choice if we want to see the sign of the direction vi 7→ ci = vi+1

2 or just the direction
vi 7→ ci = |vi|.

• An alternative approach is not to use the (r, g, b) color space but to employ the (hue, saturation,
luminance) triple.

Although color coding of vector fields allow fast insight to an entire vector field volume, its drawback
is that it is not easy to understand intuitively and requires some experience. Nevertheless it is an easy
technique which can be applied to all vector fields which are given on geometrical objects, e.g. when
displaying a vector field on the isosurface of a scalar field.

Texturing A superior way to encode vector fields on a surface than by color coding is using monochrome
texturing which contains directional information. The method of line integral convolution (LIC) works
by smearing white noise with the flow of a vector field. A fast implementation for two-dimensional LIC
has been extensively discussed in [Sta98]. Three dimensional LIC has been used as well[IG97], creating
three-dimensional monochrome texture maps containing directional information.

4.1.2 Covectors

The definition of the gradient of a function (2.28) involves a given metric. Using locally planar sheets of
constant function value is a more direct way to visualize a function gradient, which does not imply some
metric.

Covectors are often identified and even confused with vectors. Vector visualization methods can be
used for covectors as well and provide an intuitively fast understanding. However, covectors have a
different meaning than vectors and can be interpreted directly and visualized in differently in a more
appropriate way.

By definition (see also 2.1.1), a covector W is a function, which linearly maps a vector v to a number
W (v):

W : Tp(M) → R

v 7→ W (v)

An appropriate visualization of a covector is rendering the set of vectors that reveals the same number
when using the Euclidean scalar product, i.e. with V ∈ T ∗

p (M):

V ∼= {~v |~v · ~w = V (w)∀~w}
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The visualization of all vectors, that yield the same Euclidean scalar product with a fixed ~w, is a plane (in
general: a n− 1 dimensional hyperspace on a n-dimensional manifold). A covector describes the change
of a function f along a direction as specified by a tangential vector ~v. A covector V can thus be visually
imagined as a sequence of coplanar (locally flat) planes at distances given by the magnitude the covector,
that count the number of planes which are crossed by a vector ~w. This number is V (w). For instance,
if we chose the cartesian coordinate function x then a covector dx “measures” the “crossing rate” of a
vector w in the direction along the coordinate line x.

(a) Vector field ∂z (b) Duality relationship among
∂z and dz

(c) Covector field dz

Figure 4.1: The trivial constant vector field along the z-axis viewed as vector field ∂z and as covector
field dz.

(a) Radial field dr (b) Azimuthal field dϕ, view of

the equatorial plane (z-axis to-
wards eye).

(c) Altitudal field dϑ, slice along
the z-axis.

Figure 4.2: The polar basis covector fields.

4.1.3 Approaches for Tensor Fields

Usually visualization of tensor field concentrates on symmetric tensor fields of rank 2 in three dimen-
sions. Only few approaches exist to deal with general rank 2 three-dimensional tensors like Demarcelle
and Hesselink’s widely known hyperstreamline technique [DH93] or A.Pang’s deformation fields [BP98].
R. Kriz [KGM95] even investigated tensors of higher rank. Here, for now the term “tensor” will be
limited to symmetric 3×3 tensors. Most visualization methods are constrained even more to the domain
of positive definite tensors; we will call these tensor field “metric tensor fields” in accordance to def. 28
(but still keeping in mind that the underlying tensor fields might have nothing to do with a metric, i.e.
it could be a stress tensor field, as well as a spacetime metric field in 4D is not positive definite, but only
its spatial projection).
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(a) ∂r (b) dr

Figure 4.3: Radial vector and covector field.

Iconic techniques

The most straightforward way of visualizing tensors via ellipses (in 2D) and ellipsoids (in 3D) has been
carried out very often. The capabilities of this method is discussed in 4.3.2. Alternative icons have been
invented to enhance certain properties more clearly, like the Haber Glyph [Hab90], demonstrated in 4.3.2,
and the Reynolds Glyph [MSM95], mentioned in more detail in 4.3.2. In section 4.3 a selection of newly
invented or improved iconic techniques will be discussed, whereby the best methods allow a smooth,
continuous overview of a three-dimensional tensor data volume (especially the newly invented “Tensor
Splats” method 4.3.2).

Deformation Fields

As seen by eq. (2.15), providing an arbitrary vector field v, a tensor field G defines a new vector field w:

w := G(v,−).

Boring [Bor98] and Pang [BP98] concentrated on the idea of deformation fields, making use of the
interpretation of a tensor field as a map from vectors to other vectors and compute the deformation of
surfaces under the action of a tensor field. Each point P within a plane with normal vector ~n is mapped
to another point P̃ = P +sGP (n) with s a free scale factor. This technique also works for non-symmetric
tensor fields and can be extended to volumes [ZP02], but is limited to display only a fraction of the tensor
field at once as it requires some user-chosen input vector field. The full information content of the tensor
field is not visualized until it has been probed with three linearly independent vector fields, resulting in
three views that have to be mentally combined.

The advantage of this method is that it can be done interactively, is fast and intuitive. Tensor
deformation can be applied to arbitrary surfaces, not only planar slices. It is thus useful to e.g. inspect
spherical symmetry properties. The contiguous visualization results are a great plus for this technique.
However, each visualization only displays a part of the tensor field, depending on the chosen surface. It
cannot visualize a complete tensor field at once, each image by itself visualizes just three of six (or nine)
tensor field components and is coordinate-dependent. Mental combination of separate images is require
to get a complete view of the tensor field.

Integrating Methods

A problem common to all visualization techniques using icons is the problem of visual clutter. In vector
field visualization the most direct way of drawing a vector arrow at each point in space is replaced
displaying critical points and integral lines, like streamlines, streaklines and pathlines.
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(a) ∂ϑ (b) dϑ

Figure 4.4: Altitudal (latitudal) vector and covector field.

Tensor deformed surface
G(n,-) (tensor field applied to normal vectors)

n (normal vectors)

User-chosen surface with corresponding normal vectors

Figure 4.5: Tensor deformation surface: The result of a surface when the action of the tensor field on
the surface normal vector field is computed.

The natural equivalent of vector field integral lines in a metric tensor fields are geodesics [Bry92].
Geodesic paths also depend on the derivative of the metric tensor field. A visualization of a geodesic
bundle is a direct visualization of the Ricci tensor, which involves second-order derivatives of the met-
ric tensor field. It is also known as Ricci focusing in gravitational lens theory. The consideration of
lightlike geodesics also opens the path to the most physically correct and coordinate independent way of
visualizing a metric tensor field, the computation of photorealistic images via raytracing in curved space
[Yam89, Ben96, Wei00], but this approach is computationally very expensive and of limited usability
when inspecting simulation data for numerical purposes. In the domain of scientific visualization the
computation of geodesic paths is rarely used, on the one hand due to its low interactivity, on the other
hand because it requires not only seed points (like for vector field integral lines) but also initial velocities,
thus providing a large parameter space which makes automations hard.

Delmarcelle and Hesselink developed the technique of “Hyperstreamlines” [DH93]. These are stream-
lines of the maximum (or minimum) eigenvector “field” within a tensor field, but instead of drawing
simple line segments the hyperstreamline is drawn with an elliptical cross-section that incorporates the
minor and median eigenvalue, thus displaying five quantities in one geometrical object. The only left
quantity, the maximum eigenvalue, is encoded as color along the hyperstreamline, thus depicting all six
independent components of a symmetric tensor field. This technique is also able to deal with asymmetric
tensor fields by sweeping a cross instead of an ellipsoid along the eigenvector streamline. The “rotation”
of this cross along the streamline displays the antisymmetric part of the tensor field. Hyperstreamlines
are implemented as a standard tensor field visualization tool in the Visualization Toolkit [Kit].
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However, integration of the eigenvector “field” runs into problems in isotropic regions of a tensor field,
where all three eigenvalues (or the two largest ones) are of the same size and the maximum eigenvector
becomes ambigous/undefined (similar “isotropy artefacts” also happen with the previously mentioned
glyph methods that are designated to enhance anisotropy) – an integral line of the maximum eigenvector
field may therefore wildly jump from point to point. Weinstein et.al. invented Tensorlines[WKL99] to
cure this problem by weighting the influence of the eigenvector field on a integral line by the isotropy of
the tensor field at each integration point.

Like streamlines themselves, hyperstreamlines and tensorlines don’t make much sense if the underlying
tensor field does not provide meaningful integral curves, e.g. when large regions are isotropic or zero.
Another disadvantage is their limited use for quantitative examination of two-dimensional data slices.

A “poor man’s” raytracing of three-dimensional tensor fields was used by Pang [ZP03] to use integral
lines of deviated vector fields as light paths, leading to lensing effects similar to relativistically moving
refractive objects[LSP01].

Color Coding

The quality of integral lines strongly depends on the initial seeds and depicts just a subset of the com-
plete data volume. Kindlmann, Weinstein et.al.[KW99, KWH00] investigated the capabilities of volume
rendering for tensor fields by mapping of tensor field quantities to colors and shading parameters. This
technique provides a broader overview of the entire tensor field but requires some learning of the visual
effects and user interaction within the parameter space. Volume rendering can only display four quan-
tities in a volume via mapping to RGBA, thus displaying only a (user-chosen) subset of the six tensor
field components at once (“hue-ball” visualization technique). Additional information can be casted
into reflection parameters, thus encoding anisotropy into anisotropic light reflection effects on a surface
(“lit-tensor” visualization technique).

Texture pattern

Laidlaw[LAK+98] uses a technique inspired by the keystrokes of Van Gogh’s oil paintings to draw two-
dimensional slices of a tensor field by small normalized ellipses, encoding the absolute size of the projected
tensor field as a stripe texture on the ellipses and drawing isotropic areas transparently. The maximum
eigenvector component orthogonal to the slice plane is used to determine the saturation of the ellipse
color/ The result is a texture pattern that provides a qualitative overview of the tensor field properties
when viewed from a distance, but also provides quantitative details when inspected closely. However,
this technique is limited to two-dimensional slices and intrinsically assumes that two eigenvalues of the
tensor field are similar.

Sigfridsson et.al.[SEHW02] are using a technique similar to volume LIC[IG97] to smear some spot
noise along the dominant directions contained in the tensor field. However, their technique appears to
be computationally expensive and is hardly applicable to time-dependent data due to the random noise
introduced (a problem common to LIC methods). Moreover, the artificial noise structures introduce
visual information that is not really contained in the data set and is larger than one voxel, thus smearing
eventual fine structures in the original data sets.

Tensor fields of higher rank

Riemann Glyphs [KGM95] are an interesting approach to visualize tensors of rank larger than two. Usual
tensor field visualizations do not deal with tensors of orders higher than two. The idea here is to a “typical
surface” similar to a quadric surface of a rank two tensor. For higher orders, we get surfaces of higher
order as well, resulting in “bumped spheres” or “bumped ellipsoids”. The location and amplitude of such
a “bump” on the resulting surface stands for the properties of the tensor.

However, the resulting graphical object is not straightforwardly intuitive to interpret. As it is an
iconic technique, it is hardly applicable to a three-dimensional collection of points, similar to the tensor
ellipsoids. It has not been re-implemented here, but is mentioned because of its special approach.
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4.2 Lamina Technique

Rendering transparent surfaces is of special interest for visualization purposes. The OpenGL rendering
library allows to specify attenuation factors, called “alpha values”, with each vertex of a surface element
(e.g. triangles), which specify to which extend the background should shine through when rendering a
new graphics primitive like a polygon. This functionality can straightforwardly be used to render the cells
of a surface with constant transparency. However, the result is not visually pleasant because this process
does not represent the intuitively imagined physical situation of a glass surface. The transparency of a

Figure 4.6: The transparency of a planar glass plate depends on the view angle.

true planar glass plate depends on the view angle (fig.4.6), because the length of the light path l through
the glass medium with a thickness D will depend on the impact angle β via

l =
D

cosβ
(4.3)

The transparency (fraction of transmitted light) of a material with optical depth σ is exponentially related
to the length of the light path as (known as a solution of the radiation transfer equation):

T (l) = e−
l
σ (4.4)

The transparency of a small glass plate, some “lamina” with constant optical depth, depends on the view
angle via eq. (4.3) and (4.4):

T (cosβ) = e−
D

σ cos β (4.5)

For β = 0 (normal view) the transparency becomes a minimal value Tmin = e−
D
σ . For β = π/2

(tangential view) the transparency becomes zero T = 0. The alpha value used by OpenGL is given via
the transparency as 1− T (an alpha value of zero corresponds to T = 1 or zero path length l = 0).

Figure 4.7: Let OpenGL allow to smoothly interpolate the transparency texture from vertices by speci-
fying surface normal vectors as texture coordinates.

The OpenGL alpha values thus need to depend on the view direction for a realistic appearance. Ideally
OpenGL rendering is done via “display lists”, which allow to execute some rendering code very fast, but
such rendering code must not contain any view dependency. A solution to this contradiction is shown by
the technique of illuminated streamlines by Zoeckler,Stalling,Hege [ZSH96], which demonstrates a way
how to simulate view dependent appearance while still rendering via OpenGL display lists. The idea is
to make use of a texture matrix within a display list, but to encode the view point information ~L in the
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texture matrix. The view-independent display list code will then make use of a view-dependent texture
matrix, which is set up outside the display list as a function of the view direction ~L as:







Lx Ly Lz 1
0 0 0 0
0 0 0 0
0 0 0 2







(4.6)

This texture matrix results in a texture coordinate u as a function of the texture vector ~t which is
proportional to the view angle:

u(~t) =
1

2

(

~L · ~t+ 1
)

≡ 1

2
(cosβ + 1) (4.7)

whereby u ∈ [0, 1]. The (cosine of the) view angle can be reconstructed from the texture coordinate u by
the simple relation:

cosβ = 1− 2u(~t) (4.8)

The combination of (4.8) with the transparency (4.5) yields a one-dimensional texturing function T (u),
that can be directly fed into an OpenGL alpha texture (see fig.4.8) and results in much faster display-list
supported surface rendering (table 4.1). To achieve using the texture function (4.7) at each vertex of

(a) (b)

(c) (d)

Figure 4.8: Rendering of a triangular surface with different methods. upper row: (a) view-independent
constant alpha (possible via display lists) and (b)view-dependent “fancy” alpha (done by new rendering
for each view direction) (upper row); lower row: fast rendering via display lists using a one-dimensional
view-dependent alpha texture, with (c) 50% and (d) 100% scaling of the overall transparency.

a surface, the surface normal vector needs to be specified at each vertex as three-dimensional texture
coordinate. The texture matrix (4.6) transforms this three-dimensional texture into a one-dimensional
texture index. Hereby OpenGL also performs smooth interpolation of surface points between the surface
vertices, while sustaining any color information. The lamina transparency can thus be used easily in
addition to a color field that is specified on the surface (see fig.4.11).

Using (4.5) as texture function results in a physically correct appearance of surfaces built from a thin
semi-transparent material. However, we are not forced to use exactly this formula, choosing another alpha
texture function will not influence the rendering performance. Alternative view-dependent transparency
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Infinite Reality 2 SGI O2
Opaque Shading 70fps 3fps
Transparency w. depth sorting 14fps 1.2fps
Laminae technique via Display Lists 60fps 5fps

Table 4.1: Comparison of the lamina rendering technique with standard rendering. The achieved frames
per second is excellent in all cases, while the lamina technique still allows high quality parametrized
transparent surface rendering.

functions allow fine-tuning of the surface appearance via unphysical parameters. An empirically useful
transparency function is given by:

T =

{

0 cosα ≤ ε
1− (cosα− ε)κ

cosα > ε
(4.9)

The two parameters ε (“edge visibility”) and κ (“transparency falloff”) allow smooth transitions from
totally opaque surfaces via physically correct appearing surfaces like using (4.5) to a pure contour view
of surfaces (see fig.4.9). Another interesting transparency function is 1 − T with T from (4.9). This

(a) (b)

(c) (d)

Figure 4.9: Variations of transparency parameters using the adjustable lamina transparency function
4.9: (a) emphasizing edges with κ = 1, ε = 0.5, (b) reduced transparency with prominent edges κ =
0.5, ε = 0.5, (c) reduced overall transparency κ = 0.5, ε = 0, (d) contour view with zero transparency but
edge enhancement κ = 0, ε = 0.5.

transparency function results in dissolving contours, while view-orthogonal surface section stand out
prominent. Surfaces rendered with such a transparency function look like objects filled with some cloud-
like material, thus visually transforming two-dimensional surfaces into voluminous objects (fig.4.10).

In general, rendering transparent surfaces requires depth-sorting of the involved surface elements,
because the OpenGL depth buffering in insufficient to track transparency information. However, for
very transparent surfaces when mainly a surface contour is visible, depth sorting can be omitted. Depth
sorting as a view-dependent operation is contradictionary to using OpenGL display lists. A compromise
but still useful solution is to use multiple display lists, which correspond to selected view angles. They
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Figure 4.10: Using an inverted transparency function T ⇒ 1−T leads to an voluminous effect like filling
an invisible surface with some cloud-like material.

are generated on demand an re-used when a view angle is within a certain deviation close to the exact
view angle. This deviation angle can be some input parameter that allows the user to select the desired
compromise between speed and precision. The exact solution would set the deviation angle to zero, thus
practically disabling display list rendering at all. In practice, using a deviation angle of π/2, resulting in
six display lists overall, is sufficient to achieve fast display list-enabled transparent surface rendering.

Figure 4.11: A colored surface with parameterizable transparency. (Data are the apparent horizons of
just merged black holes with the gaussian surface curvature displayed as colors.)

Figure 4.12: Standard opaque surface rendering, left image, may be enhanced by combining it with the
lamina surface rendering technique, right image. The lamina overlay results in a prettier image and may
be used to emphasize the edges.
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4.3 Studying Relativistic Tensor Fields

The central task of visualizing tensor fields is to depict multiple quantities instantaneously at each point
of a volume. The number of independent quantities for tensors of rank 2 is demonstrated in the following
table:

dim(M) symmetric antisymmetric general
3 6 3 9
4 10 6 16
n n(n+ 1)/2 n(n− 1)/2 n2

In the succeeding paragraphs a collection of various tensor field visualization methods is given, some of
them as review of existing approaches, but also including newly developed techniques. Table 4.2 compares
various tensor field visualization methods. Bold entries indicate methods that have been newly developed
or re-implemented. The table is ordered according to the quantities within the tensor field which are used
for the visualization. It is not possible to give an overall evaluation for these methods and to determine a
“best” visualization method – each method has advantages that might be superior to others in a special
case. E.g. tensor ellipsoids are straightforward to understand, but suffer under visual clutter problems.
Tensor splats clearly display relevant features of a tensor field even in 3D volume, but require little
learning and understanding of the visual effects - as with most tensor field visualization methods.

Nevertheless some criteria might help to select an appropriate method for a particular case or to
estimate the benefits vs. costs of an implementation approach:

• Number of quantities: Does the method make use of the full information content of the tensor
field or does it work by reduction to fewer quantities? Often methods displaying a reduced set
include parameters that allow to browse other quantities as well, such that many images are required
to get a complete impression of the tensor field. E.g. some methods also include the derivative of
the tensor field; they can’t display all quantities at once, e.g. geodesics only display a fraction of
the tensor field depending on their initial data. We call such an input parameter set a “probe”.
It accompanies a visualization method in a graphical user interface. It may be implemented as a
simple GUI slider or a complex graphical 3D dragger. Its purpose is to specify a subset of the tensor
field via interactive means. A complete visualization of the tensor field is then provided by a set of
images that contribute to multiple views based on different input parameters.

• Robustness against visual clutter: Is a method suitable for three-dimensional data volumes or
is it limited to two-dimensional slices only?

• Isotropy artifacts: As mentioned earlier (p.50), visualization methods relying on eigenvectors usu-
ally suffer under eigenvector ambiguities in isotropic regions, thus leading to undesired apparently
chaotic behavior. All eigenvectors are undefined and may point into any direction if all eigenvalues
are equal (“major isotropy artifact”). A similar, but minor issue arises when two of three eigenval-
ues are identical, leading to two undefined eigenvectors within a plane (“minor isotropy artifact”).

• Limitation to positive definite tensors: Can the method handle tensor fields with negative or
zero determinant?

• Limitation to symmetric tensors: Can the method display asymmetric tensor fields?

As mentioned before, selecting an optimal choice is problematic due to various constraints outside the
pure technical issues of a visualization method. Nevertheless, if some evaluation would have to be done,
one of the best general purpose methods appears to be the “Tensor Splats” method (4.3.2), which has
been developed as part of this thesis.

Algorithm Classification

This section relates the tensor field visualization work to the data model as described in chapter 3.
Reading this section is not required to understand the succeeding text. However, knowledge of the
concepts presented in chapter 3 is essential for comprehending this section.

In accordance with the concepts of Grid algorithms 3.2.2 and Grid operations 3.2.2 in the Fiber
Bundle model the presented visualization methods can be categorized into:
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Tensor Encoding Q Viz Method ⌣ tr(G) “+” sym
Gxx, Gxy, Gyy,
Gyz, Gzz, Gzx

6 Quadric surface bad good no yes

Metric ellipsoids bad good yes yes

Geodesic emission bad good yes yes

Reynolds Glyph bad good yes yes

~vmax, λmax, λmed, λmin 6 Haber Glyph bad bad yes yes

Tensor Schlieren good bad yes yes

G00, G01, G11,
G12, G22, G20

6+3 Tensor Cones bad bad yes yes

G00, G01, G11 3 Deformation Surfaces bad good no no

Tensor Rain good good no no

G00, G01, G11,
tr(G)

4 Color Coding good good no no

~vmax, tr(G), cp, cl 6 Tensor Splats good good yes yes

G(~x, ~x), G(~x, ~y), G(~x, ~y)
~x(ϑ, ϕ), ~y(ϑ, ϕ)

3-6 Tensor Shadow good medium yes yes

Tensor Glow good medium yes yes

Gxx, Gxy, Gyy,
tr(G), λmax

5 Van-Gogh keystrokes bad good yes yes

~vmax, λmax, λmed,
λmin, ∂~vmax

6(9) Hyperstreamlines good bad yes no

6(9) Tensor Lines good good yes no

Gmn, ∂Gmn “24” Geodesic good good yes yes

Gmn, ∂Gmn, ∂∂Gmn “78” Geodesics Bundle good good yes yes

Table 4.2: Tensor field visualization methods comparison table. The entry “⌣” stands for the robustness
against visual clutter, tr(G) indicates how far the methods suffers under eigenvectors ambiguities in
isotropic regions, “+” shows if the method requires the tensor field to be positive definite and “sym”
stands for requiring symmetric tensor fields.
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• Vertex Fiber Grid Algorithms: Methods which inspect each point and draw something there.
A typical example are all iconic techniques. Although iconic techniques are usually problematic,
because they suffer under view occlusion difficulties in 3D data sets and thus hide the perception
of global properties, a lot of option exists to make them powerful. to heraushol eine menge.

• Cell Fiber Grid Algorithms: Methods which traverse each cell of a grid and draw something
per cell; the chances to get a smoother result than by vertex traversal are good, because cells touch
and occupy a finite volume ins space, whereas a vertex is infinitely small by definition. Once the
problem of being compatible at touching cell faces is solved, the result will be smooth. A typical
example is the computation of isosurfaces.

• Integral Operations: Methods that start at some point, traverse to neighboring ones and cre-
ate some smooth geometrical object, which is casted into a new grid object. An example is the
computation of geodesics, which is the evolution of a particle system or some surface.

The advantage of Fiber Grid Algorithms is that they operate on some index space (e.g. on the vertices
or on the cells of a grid), which can be traversed partially as well as the full index space. The configu-
ration of the index space fraction is identical for all Topological Operators (which actually perform the
graphical operations) and depend only on the Topological Iterator, which is grid-dependent. The work of
“configuring an Iterator” thus needs to be done only once per Iterator type and is available immediately
for all visualization methods (and all of them can be configured through the same user interface as well).
Possible Iterator configurations are:

• Hyperslabbing: Only applicable for regular grids: select a regular hyperspace from within the
entire grid, e.g. via border with and subsampling

• Point Inspection: Select a single point in space via some interactive coordinate selection tool
(e.g. some 3D dragger, which may be driven by some 3D mouse device in some VR environment)
and display a detailed vertex icon at the grid location. A modified version may also easily display
multiple locations at once and e.g. show various icons along the history of a user defined path

• Randomization: Given the number of inspection points, display randomly distributed points on
the grid. This is useful for data mining on very large datasets, where displaying the full data set is
not possible, but some subsampling without aliasing and/or moire-effects is required.

• Scalar Field Threshold: Given an arbitrary scalar field on each point, display icons only on those
points where the scalar field is within a given range.

• Time Limitation: Stop the rendering process if it exceeds a given time limit. It ensures defined
reaction time of the applications and retains interactivity, which is of certain importance for VR
purposes, large datasets and huge parameter space inspection. It assumes that the computational
effort per point is constant, which is not necessarily true, but is still a good estimated. However,
when OpenGL display lists are employed, time limited rendering becomes troublesome, because the
primary rendering – which will be used for determining the allowed number of points – takes much
longer than succeeding renderings. A possible solution is to adjust the number of points after a
display list rendering has been performed and to remeasure it again, but this method may lead to
multiple iterations or even cycles, which become very confusing to the user.

Time limited rendering requires configuring an iterator to perform operations on just a subset of
the data, the hyperslabbing or randomization configurations serve well here.

• Evolutions: Instead of traversing points spatially, also the same point index can be inspected for
different time steps and fed to the Grid Operator, thus providing a clue for the dynamic evolution.

• Screen-Sorted Traversal: Transparency is not handled sufficiently by OpenGL hardware graph-
ics. The workaround is no sort the graphical primitives to perform back to front rendering. An
Iterator Object can be used to reorder the points (vertices, cells) of a Topology Objects according
to their coordinate information in a certain chart and to call a Topological Operator on this re-
ordered set of points. Thus any Topological Operator that has been developed for direct rendering
of a Topology Object can be re-used to perform rendering with depth-sorting. A typical example
is an Operator which renders opaque primitives (e.g. surface triangles or iconic objects), and its
variation to include transparency (e.g. a transparent triangular surface or transparent icons).
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4.3.1 Non-local Algorithms

Eigenvector Streamlines

As the maximal eigenvectors of a tensor G ∈ T ∗
p

2(M) play an important role, it is a straightforward
approach to employ vector field visualization methods to inspect them. The integration of maximal
eigenvectors as streamlines is the basis of one of the widest known tensor field visualization techniques
called hyperstreamlines by their inventors Demarcelle and Hesselink [DH93]. However, there are two
relevant aspects which distinguish a “field of eigenvectors” from a true vector field:

• The maximal eigenvector is undefined in isotropic regions. Its direction is ambiguous and may vary
due to slight numerical instabilities.

• The sign of eigenvectors is undefined, since −~v is a solution of the eigenvalue equation G · ~v = λ~v
as well.

In contrast to a real vector field where all components are uniquely defined at each point in space, the
eigenvector ambiguities can only be resolved via additional information. Thus the term “eigenvector
field” should only be used in quotes, there is no true “vector field” derivable from eigenvectors of a
tensor field. Unmodified vector field visualization methods would find and display features which are
not a property of the data field but stem from the numerical eigenvalue extraction algorithm (isotropy
artifacts). Modified interpolation and/or integration methods are required for eigenvectors:

• When interpolating eigenvectors within a cell, all vectors contributing to the interpolation must be
oriented such that they point into the same half-space, i.e. ~vi · ~vj ≥ 0.

• Interpolating eigenvectors yields different results than interpolating the tensor field with computa-
tion of the eigenvector at each interpolation point.

• Streamline integration advances a point q(s) of the streamline q to the next point q(s + ds) by a
small step size ds via

q(s+ ds) = q(s) + ds ~̇q(s) ,

whereby the new tangential direction is the direction of the vector field ~v at the point of interest
q(s)

~̇q(s) = ~v|q(s) .

Here, ~v is the solution of the eigenvalue equation G~v = λ~v at the point q(s) such that ~v · q(s) ≥ 0.
This last condition is essential and needs to be added to a usual streamline integration algorithm.

• Orienting the sign does not cure the problems arising from isotropy artifacts. Streamlines of the
maximum eigenvector only lead to reasonable results in regions of high linearity (see p.51). An
alternative, less vulnerable integration algorithm is thus to start streamline in a region with high
linearity and to advance it according to the deviation vector as given under the action of the tensor
field3:

~v = ♯G
(

~̇q,−
)

→ q(s+ ds) = q(s) + ds ~v . (4.10)

Weinstein et.al.’s Tensorlines algorithm [WKL99] combines this method by blending the oriented
maximal eigenvector ~vmax and the deviation vector with the shape factor cl at point q(s+ 1):

~v = cl ~vmax + (1− cl)
[

(1− w) ~̇q(s) + w ♯G
(

~̇q(s),−
)]

.

Hereby w is a user-controlled parameter in the range [0, 1] which is said to be selected depending
on the type of data.

• Both integral lines as solution of (4.10) and tensorlines don’t provide an unique direction at each
point in space, thus intersections of lines may occur - in contrast to non-intersecting streamlines
based on true vector fields.

3 Note that in Euclidean space, the right side is just a multiplication of the tensor’s matrix representation and the vector,
we may also write “G · v” in this case. In general, the metric of the underlying space needs to be involved via the ♯-operator
(see p.25), e.g. when performing this integration on a sphere or other curved surface.
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Taking into account all the limitations that distinguish “fields of eigenvectors” from actual vector
fields, the best we can still do is to

• start streamlines in regions of high linearity cl (see 2.3.2)

• set transparency along the streamlines proportional to the anisotropy, using sphericity cs or pla-
narity cp (if the two largest eigenvectors are ambiguous harms the same as if all three are undefined)

An example is given by fig. 4.13. These eigenvectors are not oriented. Thus, we see artifacts in streamlines
“turning” around when crossing a coordinate plane. Actually, the maximum eigenvector field is just ~∂r

here, so we would expect only radial streamlines.

Figure 4.13: Vector field stream lines applied to the field of maximum eigenvectors of the Kerr metric of
a rotating black hole. Colormap and distribution density are set from linearity, transparency is set from
sphericity.

As the numerical eigenvector computation algorithm does not know anything about spherical or axial
symmetry, it orients the eigenvector along a coordinate axis, e.g. x. Consequently, the radial eigenvector
is oriented “left to right”, i.e. pointing radially inwards left of the coordinate origin and radially outwards
right of it. This behavior leads to the visible “turnaround” at x = 0. Beside this artifact, the dominantly
radial structure of the spacetime is clearly depicted. However, streamlines are not able to display planar
regions appropriately. Color and transparency coding is limited to indicate the validity of streamlines, but
give no notion of a second direction where one might be of relevance. Especially, eigenvector streamlines
are not able to depict the anisotropy features in the Kerr metric as in fig. 4.13.

A similar behavior is depicted by fig. 4.14, discovering linear grid stretching in the metric tensor field
of two colliding black holes. Still, we find the eigenvector orientation coordinate artifact. As the black
holes are colliding, they drag around their space with them. This feature is indicated by the eigenvector
streamlines morphing from a radial into spiral-like shape. However, the eigenvector streamlines don’t
provide information about the actual geometrical properties of the spacetime, although they might provide
some clue about it.

Summarizing, maximum Eigenvector stream lines provide a visually attractive and quite clear view of
the prominent features of a three-dimensional tensor field. On the other hand, they contain some danger
of appearing “too pretty”, as they might falsely suggest a flow; however, a tensor field does not describe
a “flow”, but just “the possibility of a flow”. An actual flow as determined by the tensor field may occur
in more than one direction. This property of a tensor field is not depicted by eigenvector stream lines.
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Figure 4.14: Streamlines of the maximum eigenvector “field” of the metric tensor field of colliding black
holes (“Discovery data”), top and side view at time units T = 25 and T = 35. They provide a rough,
but incomplete overview of the data set. Strong artifacts arise due to the arbitrary flips of sign of the
eigenvectors.

Nevertheless, as long as this limitation is kept in mind, this rendering method provides an effective way
of visualizing some (but not all) important properties of a tensor field.

Summary:

+ Useful for rough overview and feature detection.

+ Builds on existing vector field visualization methods.

• Provides 3D views, but not applicable to surfaces (e.g. slices).

- Provides only incomplete information, but danger of looking “too pretty”.

- Must not be used as the only method of interpreting a tensor field.

- Streamlines are not applicable to time-dependent data.
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Tensor Rain

A tensor field may be studied under its action on a vector field. A nice descriptive image coining the
name “tensor rain” is rain falling down in parallel stripes that is diverted by some gust of wind. Here,
the tensor field plays the role of the wind and the rain is some arbitrary input vector field. Our interest
is in the variations of the tensor field itself, but we explore it by inspecting the deviated vector field,
the “rain” instead. As this result is a vector field, we may employ a large variety of well-experienced
vector field visualization techniques. Mathematically, we make use of the duality properties (2.14) of the
tangential and co-tangential space. At first, we can interpret an arbitrary tensor field g ∈ Tp(M)⊗Tp(M)
as a function that maps a vector to a covector:

g : Tp(M) −→ T ∗
p (M)

v 7−→ g(v,−) := V ∈ T ∗
p (M) such that ∀w ∈ Tp(M) : < V,w >= g(v, w) .

The coordinate expression is g(v,−) = gµνv
νdxµ. Thus, the application of a tensor field onto an (ar-

bitrarily chosen) vector field yields a covector field, which is computed by index contraction. We may
employ the Lamina technique to directly visualize the resulting covector field as in fig. 4.15. The Laminae

Figure 4.15: Covector Laminae applied to the Kerr metric probed with the ∂z axial vector field, seen
from the side (left) and from the axis (right).

covector visualization clearly enhances deviations from the “zero”-action of the tensor field such that we
only get visual structure where the tensor field deviates from the flat-space metric.

The covector field may also be mapped to a vector field u via index raising by employing the musical
isomorphisms 2.1.1 in flat rendering space u = ♯g(v,−). We thus get some input data appropriate for
vector field visualization algorithms. In regions where the tensor field is isotropic, the direction of the
probing vector field v will be sustained, in anisotropic regions it will be deviated. This method is most
useful for parallel input vector fields, but other vector fields like a radial vector field ∂r may be used to
study the deviation from a certain symmetry (e.g. radial symmetry). Depending on the direction of the
infalling “rain”, different output patterns arise due to different deviation produced by the tensor field,
e.g. fig. 4.16. By using a vector field as some input data, the number of visible tensor field components
is reduced. The resulting output vector field contains three of the six components for a metric tensor
field (or three of ninefor an arbitrary tensor field - there is no restriction of this method to metric tensor
fields). The “vector field probing” is a projection of the tensor field in the direction of the vector field;
e.g. if the input vector field is ∂x, then the resulting vector field will be constructed by the components
(gxx, gxy, gxz). Consequently, inspecting a tensor field with a single vector field probe is insufficient to
really detect all features of the tensor field. For a metric tensor field, at least a second vector field probe
has to be used, an arbitrary rank two tensor field requires three vector field probes. While a single instance
of a “tensor rain” visualization still contains “artifacts” due to the arbitrary projection operation, cycling
between multiple input fields finally discovers all features of the underlying tensor field – although not
in a single vector field visualization image, but in the combination of them, either by overlaying multiple
images in the screen or in the user’s human brain. Interactivity and smooth transition among intuitively
understandable input vector fields is an important issue here.
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Figure 4.16: Streamlines of the Kerr metric probed with the ∂z axial vector field (left) and the ∂x

coordinate vector field (right).

The advantage of the vector field probing (“tensor rain”) method is a contiguous visualization of the
tensor field in 3D if good vector field visualization methods like streamlines are used. Its disadvantage is
that this method is not good for still images, like for publications in papers, because an understanding
of the complete tensor field requires user interaction.

Possible extensions Certain extensions on the vector field probing technique are possible. Two ideas
that might be worth trying are mentioned, although they have not been implemented yet:

Tensor fields of higher rank The idea of vector field probing could also be extended to tensor
fields of higher rank by involving multiple vector fields: Let the provides two probing vectorfields (e.g.
by specification of two directions, which could be visualized as light from a red and a green source), then
visualize the effects of an tensor field acting on these vectorfields. E.g. when the tensorfield is of order
two, the result is a scalar field which can then be visualized by ordinary volume rendering. A tensor
field of order three results a vector field, which can be visualized with usual vector field visualization
techniques, like streamlines. Even a tensor field of order four, like the Riemann tensor, can be visualized,
as the result of the interactive probing with two vectorfields are tensor ellipsoids (or any other second-
order visualization techniques). In the case of the Riemann tensor, it would be zero at large distances
from a black hole (asymptotically flat space), but close to it “something” would happen to the probed
tensor ellipsoids, depending on the input fields.

Acceleration field A metric tensor field determines acceleration on a vector field v ∈ T (M) or a
curve q : R→M :

a = ∇vv = vµ
;νv

ν∂µ = (vµ,ν +∇µ
σνv

σ) vν∂µ = (q̈µ +∇µ
σν q̇

σ q̇ν) ∂µ , (4.11)

see def. 46. For freely falling particles, the acceleration vanishes, i.e. a = 0. In an inertial system, the
connection coefficients ∇µ

νσ = 0 vanish, and the acceleration is just vµ,ν v
ν∂mu and the second derivative

of a curve becomes a = q̈µ∂mu. However, in general Christoffel symbols will be non-zero and act like
a “virtual force” that depends on the velocity of some particle in the given coordinate system. This
“coordinate acceleration” q̈µ of a freely falling particle with a = 0 corresponds to

q̈σ = −∇σ
µνv

µvν . (4.12)

This “coordinate acceleration field” q̈σ is not a tensor field. It may vanish in one chart while in another
chart it is non-zero. Visualizing this acceleration field a depending on some input vector field v is thus a
visualization of the connection coefficients (def. 2.40). In the case of a Levi-Civita connection it depicts
the derivatives of the metric tensor field. Any vector field visualization method can be used.
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Geodesics

The world line q(s) of a particle with mass m in a spacetime is described by the solution of Newton’s law

m∇q̇ q̇ = F

whereby F is an external (non-gravitative) force (see also def. 46). If no external forces, i.e. only
gravitational forces, are present, then the particle is said to be free-falling and obeys the geodesic equation
(2.35). In a coordinate system we get a second order differential equation:

q̈µ = −∇µ
σν q̇

σ q̇ν ,

thus a geodesic is uniquely defined by a starting point and an initial velocity. These properties distinguish
metric geodesics from integration lines vector field. In particular an infinite number of geodesics may
pass through a certain point in space, i.e. geodesics may cross whereas integration lines of a vector field
cannot.

In a pseudo-Riemannian spacetime, we distinguish among timelike geodesics that are defined by
g(q̇(s), q̇(s)) = 1∀s and null geodesics with g(q̇(s), q̇(s)) = 0∀s. Spacelike geodesics have a physically
relevant meaning only in static spacetimes. The timelike geodesics describe the path of particles with
non-zero rest mass; the path depends on the initial 3-velocity (the energy) of the particle. Null geodesics
describe the path of light and depend on the initial direction only. Particle trajectories thus involve a
larger initial data parameter space. A straightforward but not unique and highly coordinate-dependent
choice is to set particles at rest in a certain coordinate system, example given in fig. 4.17.

Figure 4.17: Timelike geodesics in the Kerr metric, particles are uniformly distributed in space and start
with zero velocity. Their paths visualize the rotational drag of the spacetime, known as “gravitomag-
netism” that lets particles “feel” the rotation of a mass. This effect is absent in Newtonian gravity.

Figure 4.18: Timelike geodesics in the Kerr metric, particles are distributed along the diagonal coordinate
axis (left) or uniformly in space (right). Particles are dragged around in the spacetime, but come to an
apparent rest at the event horizon.
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Distortions of extended freely falling objects Based upon a set of timelike geodesics we may also
compute and trace the distortion of complete geometries. It were possible to use the vertices of some
spatial geometry as the initial points of some geodesics, but that would require to re-compute the geodesic
paths if the geometry is changed. Especially when computing geodesics in a numerical spacetime this
is problematic because the evolution of the spacetime itself takes significant computation time. Instead,
we distribute the initial points uniformly in coordinate space and evolve a geometry relative to these
points. The initial velocity can be set independently, the easiest choice is to set it to zero. The cactus
code [MPIfGP03, BMSW98] allows to evolve a (numerical) spacetime with particle point locations and
proper time being computed via its geodesic equation. No interaction of the particles with each another
and no back-reaction on the gravitational field is assumed. This assumption corresponds to an object
made out of dust, where no forces influence the object. Equivalently, we may assume that the gravitational
forces are much stronger than any electro-magnetic forces which try to keep the object stiff. The topology
of the freely falling particles is kept constant during evolution. While the particle’s location are evolved
in coordinate space, the computational coordinates, we may also consider a comoving chart which maps
each particle to a constant location in R

3 with a yet to be defined scaling factor.

Figure 4.19: Initially uniformly distributed particles in the vicinity of a Kerr black hole, in comoving
coordinates (upper row) and computational coordinates (lower row). Color indicates the proper time,
the age of the particles.

The coordinates of an arbitrary extended object’s vertex, which may be the output of a computer
graphical modeling tool, may now be interpreted as if they were comoving coordinates. The object’s
size is scaled such that each vertex is enclosed within a uniform comoving cell (i.e. the objects needs
to be scaled to fit into the bounding volume of particles in comoving coordinates). A certain vertex v
may then be described via linear combination of its surrounding particle points pi, i.e. written as an
interpolation vµ =

∑
Wip

µ
i (which is a coordinate expression in the vector space R

3 ). Now to get the
shape of the object in the original coordinate system, we exchange the comoving coordinates pi by the
computational coordinates p̄i while keeping the weights constant. We assume that the test particles are
distributed sufficiently dense such that each regular cell in comoving coordinates can be interpreted as
locally Minkowskian (def. 43) [otherwise the number of particles in the numerical simulation would have
to be increase]. Then the coordinate of the vertex in computational coordinates v̄µ can be found via the
simple vector space operation v̄µ =

∑
Wip̄

µ
i .

Additionally, the comoving coordinate weights Wi (which, for a static object, are kept constant over
time) also allow the evaluation of any field given in computational coordinates in comoving coordinates.
An interesting example is the evolution of the proper time at each particle. For a certain time slice of
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Figure 4.20: An extended object kept static in comoving coordinates. The colors indicate the proper
time, the object thus is actually also stretched in time.

Figure 4.21: Geodesic distortion of an extended object. The movement of freely falling particles is
projected by vertex interpolation on the object.

computational coordinates the proper time is not constant for all particles but varies significantly. Thus
by the method described above we do not see the distorted object only distorted in space, but also in
time.

The algorithm described here does not provide a true physical distortion as it would happen in nature.
For that it were required to always render object vertices with the same proper time instead of slices of
constant computational coordinate time. However, this is not implemented.

The change of the object’s vertex locations in the computational chart can be formulated as a chart
transition in the fiber bundle model. In contrast to analytic coordinate transition functions, the trans-
formation rule is given here numerically via an interpolation, i.e. the operation of grid evaluation. The
visualization procedure can be described as follows:

Task: Cactus [MPIfGP03] is able to compute the trajectories of freely falling particles (timelike geodesics)
in an arbitrary spacetime. The initial conditions of these particles can be set as uniform regular distri-
bution. While the regularity will be sustained during evolution (except when particles disappear or new
ones appear), the uniformity will be destroyed rapidly. An arbitrary geometric object will evolve un-
der the gravitational field as the particles behave (assuming there are no physical forces involved which
constrain the geometry physically). The relationship among the uniformly distributed particles and the
initial geometric appearance of the object is conserved for all times and can thus be used to compute the
shape of the object during evolution.

Input: A uniform distribution of particles at T = 0, a regular distribution of particles for T > 0, the
shape (vertices) of a geometrical object at T = 0.

Output: The shape of the object for T > 0.
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Figure 4.22: The spaceship enterprise in “free falling coordinates” (left) and “standard coordinates”. In
the first case, the reference vertices are uniformly distributed and the object appears undistorted. In the
latter case, the reference points are spiraling inwards and the object is distorted accordingly.

Procedure:

1. Copy the grid of the geometric object with vertices given in the free falling (proper) chart to all
time steps.

2. At T = 0, compute the weights of each object vertex via the uniform particle positions.

3. Propagate the vertex weights from T = 0 to all succeeding timesteps and let them refer to the
current slice.

4. Compute the object vertices at a given time via the vertex weights and the current particle positions.

Figure 4.23: Fiber bundle objects and operations involved in computing the apparent shape of an object
a freely falling coordinate system.
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Lightlike Geodesics Bryson [Bry92] used bundles of lightlike geodesic to visualize spacetimes already
back in 1992. He allowed to select certain initial data sets of lightlike geodesic bundles:

• “cones”: Geodesics are originating at the same event p, with initial direction set up circular with
the same angle α relative to a certain direction of interest ~d:

qi = p q̇i = cosα ~d+ sinα(cosϕi
~X + sinϕi

~Y )

where qi and q̇i are the initial position and direction of the ith geodesic out of N geodesics, with
ϕi = i2π/N and ~X, ~Y two arbitrary 3-vectors orthonormal to ~d.

• “spray”: Geodesics are originating at the same event, with initial directions in the same plane but
varying angle relative to a certain initial direction:

qi = p q̇i = cosϕi
~d+ sinϕi

~X

where ϕi = (i−N/2)2π/N .

• “tubes”: Geodesics are pointing into the same direction, but originating at a circle around the
same point:

qi = p+ r(cosϕi
~X + sinϕi

~Y ) q̇i = ~d

where ϕi = i2π/N .

• “planar”: As an extension of the “tube” initial data, we may also shoot geodesics from the same
plane, according to

qij = p+ i ~X + j~Y q̇i = ~d

where i, j are two dimensional indices of a geodesic bundle.

Geodesic Deviation The difference among close geodesics as depicted by the cross-section of a geodesic
bundle depends on differences of the Christoffel symbols and thus directly visualizes the Riemann tensor.
We show a short proof based completely on coordinate free notation. Let Φ(s, t) : R

2 → M denote a
two-dimensional array of geodesics such that for fixed parameter t the curves γ(s) := Φ(s, t = const.)
are geodesics. Let δ := d

dtΦ(s, t) ∈ T (M) denote the deviation vector of points on the geodesics with
same parameter s ∈ R, also known as the Jacobi field of the geodesics [O’N83]. Here the dot denotes the
derivative by the geodesic parameter s, which is given by the directional derivative along the geodesic:

δ̇ :=
d

ds
δ ≡ ∇γ̇δ

We may also describe the deviation by an vector field δ ∈ T (M) that is transported along the geodesic
bundle, i.e. its evolution is described by the flow map along the geodesics. This requires its Lie derivative
Lγ̇δ (see p.20 for definition the flow map and its relation to the Lie derivative) along the geodesics to
vanish:

0 = Lγ̇δ ≡ [γ̇, δ] = γ̇δ − δγ̇ = ∇γ̇δ −∇δγ̇ (4.13)

and we see that
∇γ̇δ = −∇δγ̇ .

If we compute the second derivate by the affine parameter we get

δ̈ :=
d2

ds2
δ ≡ ∇γ̇∇γ̇δ = −∇γ̇∇δγ̇

Recalling definition (2.42) of the Riemann tensor K(u, v)w and inserting u = δ, w = v = γ̇ yields:

K(δ, γ̇)γ̇ = ∇δ∇γ̇ γ̇ −∇γ̇∇δγ̇ −∇[δ,γ̇]γ̇ .

∇γ̇ γ̇ = 0 is just the geodesic equation and from (4.13) we know that [δ, γ̇] = 0, thus we see that the
second derivative of the deviation vector is linearly related to the Riemann curvature tensor:

δ̈ = K(δ, γ̇)γ̇

In flat space K = 0 in any coordinate system and no focusing happens. The deviation vector then
describes just a linear expansion of a geodesic bundle like a cone, depending on its initial cross-section δ
and opening angle δ̇. The evolution of the deviation vector in a chart is given by the coordinate expression

δ̈µ∂µ = Kµ
αβνδ

αγ̇β γ̇ν ∂µ .

The influence of curved space on a geodesic bundle is also known as Ricci focusing and plays a central
role in gravitational lens theory, a extensive discussion of theory and application can be found in Ehlers
et.al. [SSE94, SEF99].
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4.3.2 Local Algorithms

Tensor Legend

The following sections contain a collection of various tensor field visualization methods using glyphs
(icons) as the basic primitive. For evaluation and comparison of these methods, a “legend” is helpful that
displays the extreme cases of tensor shape factors (see p.51 for definition of these). For such a legend
we arrange the tensors within a triangle and construct the tensor shape from its barycentric coordinates
according to the shape classification from 2.3.2:

cs = 1
cl=0րւ ցտcp=0

cp = 1
cs=0←→ cl = 1

The appropriate tensor can be constructed as a diagonal tensor with eigenvalues computed from the
shape factors. A possible way is to impose constant trace of the tensor along the edges of the tensor
legend triangle, i.e. when writing a tensor as an eigenvalue triple G = (cs/3, cs/3+ cp/2, cs/3+ cp/2+ cl)
with the maximum eigenvector direction left open for visual adjustments:

1
3 (1, 1, 1)

cl=0րւ ցտcp=0

1
2 (1, 1, 0)

cs=0←→ (1, 0, 0)

However, this choice would lead to unpleasant results, because the according quadric surfaces would
degenerate at the cs = 0 line: remembering (2.68), the maximum half axis of the tensor ellipsoid is the
inverse square root of the minimum eigen value. The minimum eigenvalue is zero at the cs = 0 line, thus
the tensor ellipsoid becomes infinitely long in the direction of the minimum eigenvector (and at the same
time becoming infinitely thin, therefore sustaining the trace).

A better choice is to normalize the tensors by sustaining the minimum eigenvalue. This was used
for fig. 2.10 and provides a more visually intuitive clue of “a sphere flattening to a disc shrinking to a
needle”. Such a tensor shape is constructed via (2.73) from the eigenvalue triple as

(λmax, λmed, λmin) =

(
3cl
cs

+
3cp
2cs

+ 1,
3cp
2cs

+ 1, 1

)

λmin

whereby we may choose the minimum eigenvalue (the maximum diameter of the tensor ellipsoid) as a
free parameter. For λmin = 1 this tensor shape corresponds to a legend triangle of:

1
3 (1, 1, 1)

cl=0րւ ցտcp=0

1
2 (∞,∞, 1)

cs=0←→ (∞, 1, 1)

We see that the minimum eigenvalue is kept constant by the cost of other eigenvalues becoming infinite;
accordingly the trace of the tensor is not constant along the triangle edges. Instead, it is inversely
proportional to the sphericity via tr(G) = 3λmin/cs, thus becoming infinite on the cs = 0 edge as well.
Nevertheless keeping λmin =const. along the triangle edges is a better choice than keeping tr(G) =const.
. For numerical purposes, the cs = 0 line should be avoided by a small ǫ > 0, otherwise glyphs like a

Figure 4.24: Legend with constant minimal eigenvalue (left) and constant trace (right).

quadric surface would become infinitely thin, ergo invisible and thus useless. Extending the tensor legend
to include negative eigenvalues has not yet been investigated.
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Metric Ellipsoids

Figure 4.25: Tensor Legend for Metric Ellipsoids: At each point the quadric surface of the tensor at that
point is drawn. To depict the appearance of the respective glyphs of a visualization method upon various
tensor shapes in their full three dimensions, we display the tensor legend in front view and rotated from
the side. Exactly the same setup will be used for all glyph-based visualization methods.

Rendering the quadric surface, p.49, of a tensor field at each point is the natural first choice when
visualizing a tensor field. The quadric surface can be interpreted as the close4 set of points ε(p0) that
have a constant geodesic distance to a certain point ε(p0):

ε(p0) = {p : q(0) = p0, q(1) = p,

1∫

0

g(q̇, q̇) ≡ C} (4.14)

whereby q is a geodesic and the constant C is chosen according to the signature of the metric field.
Equation (4.14) defines a geodesic sphere, which will be the basis of other visualization methods as well.
For now, we restrict ourselves to a three-dimensional manifold. On p.155 we discuss a generalization to the
four-dimensional case. In first order geodesics can be computed from a given initial direction ~v ∈ Tp(M)
by a linear expression q(s) = p+ s~v. Then, the geodesic sphere reduces to the (local) expression:

ε(p) := {p : g(~v,~v) ≡ C} ,

which is the equation of the quadric surface (2.59). We may interpret ε(p) also as (the square of) the
length (see 2.1.1) of tangential vectors around p.

The metric properties of the space can be read off by counting the ellipsoids to cross along a given
path, see fig.4.27: an orbit around a black hole crosses quite few ellipses, while moving radially requires
passing through many of them (because they are squeezed radially). Thus radial distances are largely
stretched as compared to tangential distances, and the relation of circumference to radial distance is no
longer 2π like in Euclidean geometry.

It may be useful to emphasize the anisotropic properties of the tensor field by subtracting the isotropic
part, similar to the definition of the tensor deviator (2.62), via a user-specifiable tuning factor s ∈ [0, 1]:

ḡ = g − s · 1
3
tr(g) · η (4.15)

Eqn. (4.15) is a coordinate-free tensor equation as well, so it sustains the properties of the underlying
tensor field. A caveat is that too large anisotropy enhancement parameters s will make ḡ semi-definite,
i.e. ellipsoids (with bounded volume) become hyperboloids (with infinite extent).

4“close enough” refers to the near domain where the metric tensor field can be taken constant – i.e. no derivatives of
the metric tensor field are involved
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Figure 4.26: Metric Ellipsoids and Embedding surface: While light propagation takes place with equal
speed in all directions within the embedding surface (see also fig. 2.11), metric ellipsoids display the
projection of light spheres onto the coordinate plane.

Figure 4.27: Metric ellipsoids for the Schwarzschild black hole: ellipsoids correspond to the appearance
of a (local) sphere of expanding light in this coordinate system.
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Metric Ellipsoids via Transformation Rules As we know from (2.66), a symmetric tensor can be
written as a transformed unit matrix, T−1GT = Λ, which is equivalent to G = TΛT−1 . An implemen-
tation to render metric ellipsoids may thus use (2.61) to project each vertex of a unit sphere into its
proper position on the metric ellipsoid, or, alternatively, compute the eigen decomposition and employ a
transformation matrix on a given geometry according to (2.66). The first variant has the advantage that

Figure 4.28: Distortion of an arbitrary geometry via a metric tensor field. Multiple transformed instances
of the same freely chosen user-specifiable geometry provides flexibility to read off certain tensor field
properties.

no eigenvectors/eigenvalues need to be computed, which might be an expensive operation. The second
variant allows to employ hardware-accelerated geometric transformations upon arbitrary objects, yield-
ing “metric-distorted” shapes. E.g., fig. 4.29 is an example of a complex geometry, rendered “under the
influence” of the gravitational field of a Schwarzschild black hole. The spaceship object appears radially
squeezed, while tangential distances remain untouched under approach. As seen from the spaceship, ra-
dial distances appear accordingly longer and become infinite just when touching the event horizon - a way
to communicate to a non-scientific audience that radial spatial distances to the event horizon are infinite
(mathematically: grr → ∞). However it needs to be mentioned that this interpretation is valid for a

Figure 4.29: The spaceship Enterprise as it appears in the Schwarzschild coordinate system when ap-
proaching the event horizon of a black hole. It appears radially shortened, which visualizes that as seen
from the space ship radial distances increase, whereas tangential distances remain unchanged.

static observer only, since that is what the Schwarzschild coordinates have been made for. For a moving
observer, special relativistic Lorentz contraction would need to be taken into account. By that, large
spatial distances for a spaceship at rest may shrink to a short distance for a moving one. By approaching
the speed of light, even the spatially infinite distance becomes finite and a fast moving observer will see
a finite distance and will cross the event horizon without further notification of it. The infinite spatial
distance that static observers see towards the event horizon is thus nothing else than the fact that there
can be no static observers at the event horizon, every object there is pulled inwards.
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Tensor Glow

Figure 4.30: Tensor Legend for “Tensor Glow”: drawing projected 2D textures instead of 3D geometries.

This technique is a slight variation of the tensor ellipsoids. The disadvantage of tensor ellipsoids are
its opaque icons, leading to visual clutter when applied to a three-dimensional set of points. The idea
of “Tensor Glow” is based on the obvious observation that when looking at some ellipsoid, one can only
see the projected ellipsoid from a given viewpoint. Thus, it is sufficient to just draw an two-dimensional
ellipse instead of a truly three-dimensional object that is projected by the 3D graphics engine. For
drawing such an ellipsoid, we can draw a rectangle with an arbitrary texture on it. This rectangle needs
to be oriented perpendicular to the view direction and transformed by a transformation matrix according
to the projection of the tensor field in the view plane.

Let ~z be the view direction and ~x, ~y be two orthonormal vectors describing the view plane. A point
~ε on the view plane can be computed from two parameters (a, b) via ~ε = a~x+ b~y. We get the projected
ellipsoid by considering a ray ~p = ~ε+ λ~z that is orthogonal to the view plane (for orthogonal projection,
we could formulate rays for perspective projection as well). Points on the ellipsoid obey g(~p, ~p) = 1,
which yields a quadratic equation in the ray parameter λ

1 = g(~ε+ λ~z, ~ε+ λ~z) ≡ g(~ε, ~ε) + 2λg(~ε, ~z) + λ2g(~z, ~z) (4.16)

For the projection of the ellipsoid on the view plane we are interested in the set of parameters (a, b) where
the ray is tangential to the ellipsoid, i.e. where the discriminant of (4.16) vanishes:

g(~ε, ~z)2

g(~z, ~z)2
− g(~ε, ~ε)− 1

g(~z, ~z)
= 0 ≡ g(~ε, ~z)2 − g(~ε, ~ε)g(~z, ~z) + g(~z, ~z). (4.17)

We model ~ε = a~x+ b~y:

g(~ε, ~ε) = a2g(~x, ~x) + 2abg(~x, ~y) + b2g(~y, ~y)

g(~ε, ~z) = ag(~x, ~z) + bg(~y, ~z)

g(~ε, ~z)2 = a2g(~x, ~z)2 + abg(~x, ~z)g(~y, ~z) + bg(~y, ~z)2

and search for a quadratic expression in (a, b) when inserting into (4.17):

a2
[
g(~x, ~z)2 − g(~x, ~x)g(~z, ~z)

]
+ 2ab

[
g(~x, ~z)g(~y, ~z)− g(~x, ~y)g(~z, ~z)

]

+ b2
[
g(~y, ~z)2 − g(~y, ~y)g(~z, ~z)

]
+ g(~z, ~z) = 0 (4.18)

The coefficients in (4.18) for a2, 2ab and b2 are the components of a bilinear form describing the shadow
of the metric ellipsoid in the coordinates (a, b). Note that in this derivation we never used coordinates
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on the 3-vectors, i.e. this derivation was completely coordinate-free. We may also write (4.18) as

(
a b

)







g(~z, ~z)

=:π(g)
︷ ︸︸ ︷
(
g(~x, ~x) g(~x, ~y)

g(~y, ~y)

)

−
(
g(~x, ~z)2 g(~x, ~z)g(~y, ~z)

g(~y, ~z)2

)








︸ ︷︷ ︸

=:σ(g)

(
a
b

)

= g(~z, ~z) (4.19)

whereby π(g) is the projected ellipsoid g(~ε, ~ε) as in (2.74) (the intersection of the ellipsoid with the view
plane) and σ(g) is the “shadow ellipsoid”. With (v, w) the eigenvectors of this 2 × 2 metric and (λ, µ)
the corresponding eigenvalues, i.e.

σg · v = λv σg · w = µw ,

the orientation of the resulting projected ellipsoid in 3D is given by evaluating the eigenvectors as linear
combination of the basis {~x, ~y}:

~p1 = vx/
√
λ ~x + vx/

√
λ ~y (4.20)

~p2 = wx/
√
µ ~x + wx/

√
µ ~y (4.21)

The two three-dimensional vectors ~p1, ~p2 are orthonormal with respect to the metric tensor g (i.e.
g(~pi, ~pj) = δij) and are completely contained in the view plane ~x, ~y.

Since the eigenvalue equation of σ(g) is just quadratic, it can be solved faster and more precise than
the eigenvalue equation of the full 3× 3 tensor matrix. From the visualization side, the advantage of this
method is that we can use an arbitrary image as texture on the distorted rectangle. For instance, we may
use a photograph of a nice ball to get a prettier appearance of tensor ellipsoids than by drawing ellipsoids
from graphics primitives. Also, we may use a gaussian spot, which is fading out smoothly at the edges.

Figure 4.31: Using a two-dimensional texture to simulate the appearance of a three-dimensional distorted
object. The texture can be animated, e.g. to yield the impression of an expanding light sphere.

This choice yields smooth images approaching volume rendering and is less vulnerable to visual clutter.
The tensor field appears like “glowing stars” or “shining nebula”, where its veils indicate the orientation
of the tensor ellipsoids. Furthermore we may use animated textures, leading to visually dynamic effects
like bursts light flashes emanating into space, which is the physically correct interpretation of a metric
tensor’s quadric surface.

The “Tensor Glow” idea is a predecessor of the more advanced “Tensor Splats” technique 4.3.2, but
provides a more straightforward visual interpretation. Regarding rendering speed, the disadvantage of
the Tensor Glow is that it is view-dependent and the resulting geometry cannot be compiled into OpenGL
display lists. Depending on the hardware capabilities, this is compensated by the smaller numerical effort
as compared to other methods which require preprocessing and might thus finally be faster.
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Tensor Cones

Figure 4.32: Tensor Legend for “Tensor Cones”: Cones along a vector field with cross-section and
orientation according to the action of the tensor field on the vector field.

The properties of a spacetime are often visualized in textbooks and lessons by light cones. They are
“points of proper unit distance” from an event when omitting one spatial dimension from the spacetime.
This idea inspires to a similar method for a 3-metric: By specifying some direction vector (or a vector
field), a projection of the 3-metric to the plane orthogonal to this direction vector is determined. This
2-metric – the projected ellipsoid π(g) from (4.19) – can be used to draw ellipses in the respective plane.
Pulling these ellipses along the original vector with increasing scale yields a cone. Although only a subset

Figure 4.33: The cross-section of the cone equals the projected tensor ellipse (left). An additional
rotation is used to display the residual components of the tensor (right).

of the metric components are shown, this method is still useful, because it allows to display a part of a
metric field together with a vector field at once. The method may be extended if the cone is oriented
along the action of the metric tensor on the directional vector, i.e. along G(v,−). Then the orientation
of the cone together with its cross-section displays the full metric tensor and is a complete replacement
for the tensor ellipsoids. The information about the original direction vector field is lost hereby, but this
vector field can still be added through vector glyphs, or via color encoding of the tensor cones.

This method is able to display the full metric components plus a vector field within one icon. Option-
ally transparency might be chosen according to an independent scalar field, thus revealing a glyph that
is able to display 10 independent quantities at once, i.e. a full 4-metric:

g(~x, ~x), g(~x, ~y), g(~y, ~y) cone cross-section

g(~β,−) cone axis direction

g(~β,−) or ~β cone color
α transparency

whereby α is an independent scalar field, e.g. the 4-metric’s lapse function; ~β is an independent vector
field, e.g. the 4-metric’s shift vector field and (~x, ~y) are two 3-vectors orthogonal to ~β at each point.
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Figure 4.34: Rotated Tensor Cones in the Schwarzschild metric, axial and equatorial slice. Tensor Cones
appear to become “attracted” to the black hole, similar to light cones.

Figure 4.35: A 2D slice and 3D volume of the Warp metric rendered with tensor cones oriented along
the shift vector field of the 4-metric.

Choosing the shift vector field allows us to visualize the Warp metric from p.47 in an interesting
way, see fig. 4.35. Actually the spatial part of the warp metric is flat, Minkowskian, so there is nothing
particular to see and usual 3D tensor field visualization methods must fail. However, by orienting and
scaling the tensor cones, the visualization nicely shows the direction of the shift vector field and the
locally Minkowskian behaviour of the spatially flat warp metric. This idea works well even in full 3D,
where the spherical shape of the “warp bubble” comes out clear.
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Reynolds Glyphs

Moore, Schorn and Moore [MSM95] mentioned glyphs are a variation of 2.61, where the length of the
vector is set to

~w = ~v ·
√

g(~v,~v) , (4.22)

i.e. they are the “inverse” of an ellipsoid: a surface which is “inversed” at the unit sphere. Due to this
inversion, differences from the unit sphere appear more prominent than using an ellipsoid or an ellipsoid
of the inverse tensor, thus the Reynolds glyph is useful to enhance anisotropy more clearly than the
quadric surface can do by itself.

Reynolds Glyphs have not been re-implemented in this work, because they are just a minor modifi-
cation of metric ellipsoids and more advanced methods exist to enhance the anisotropic properties of a
tensor field.

Haber Glyphs

Figure 4.36: Tensor Legend for the Haber glyphs.

Haber [Hab90] invented a glyph object which is constructed by a disc and a cylinder to visualize the
principal axis of a stress tensor field. It enhances the eigenvectors and eigenvalues of a tensor field better
than tensor ellipsoids and clearly identifies anisotropic regions. In the implementation used here, the
following mapping of eigenvalues to the glyph geometry is used:

cylinder length . . . . . . . . . . . . . . . . . . . .
√
λmax

disc thickness . . . . . . . . . . . . . . . . . . . . . 1/
√
λmax

cylinder’s elliptical cross-section . . . 1/
√
λmed, 1/

√
λmin

disc elliptical diameters . . . . . . . . . . .
√
λmed,

√
λmin

Both geometrical components, the cylinder and the disc, by itself also show the full parameter space of
the tensor. As the cylinder is the inversion of the disc, deviations from the unit tensor come out very
prominent. As a disadvantage of Haber glyphs, they are based on a full three-dimensional geometry and
thus are slower to render than projection methods. This can be cured by reducing the geometry to just
the essential elements, the outline of the cross-section, see fig. 4.38. This simpler rendering provides the
same information as the fully geometric Haber glyph and also reduce the problem of visual clutter when
applied to a tensor field in a three-dimensional space. However, such visual clutter remains a severe
problem in this technique. Even worse, Haber glyphs are victims of strong isotropy artifacts, i.e. the
orientation of the cylinders with spherical diameter becomes chaotic in isotropic regions.
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Figure 4.37: The Haber glyph: the a rod is drawn with the length of the largest eigenvalue and an
elliptic disc whose axis are scaled according to the median and minor eigenvalue.

Figure 4.38: Variations of the Haber glyph: Closed, open, outlined.

Figure 4.39: Haber Glyphs applied to the equatorial plane of the Schwarzschild metric, left in full
geometry, right image as reduced outline. They depict the radial stretching of spacetime.

Figure 4.40: The usability of Haber Glyphs for three-dimensional tensor fields is quite limited, even
when their are reduced to their outline.
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Tensor Shadow

The “Tensor Shadow” technique is an experimental modification of the tensor rain technique from p.120
using covector laminae. The covector image as in fig. 4.15, left, displays a drawback of the “Tensor Rain”
visualization idea: The laminae are invisible when seen edge-on, which happens far away from the black
hole, but also in the equator plane. Thus the visual appearance does not fit to the intuitively expected
behavior of spherical symmetry, but that is the central structure of the data. If our view direction is
parallel to the probing vector field, we see the expected spherical symmetric behaviour as in fig. 4.15,
right. Thus the idea is to always chose the view direction as the probing vector field. Consequently, the
resulting visible structures become dependent of the view direction. So while a single image represents
only three of six components of the tensor field, the interactive rotation of the view volume or the observer
movement depicts different features at each view position.

Figure 4.41: Tensor Shadow for the Kerr metric. We see the action of the tensor field on the view
direction. In regions where the deviation is small, the laminae remain perpendicular to the view plane
and transparent. Tangentially oriented laminae are emphasized, such that the radial “stretch” becomes
visible, in a 3D volume as well as in a 2D slice. Note that the view right through to the center is not
obscured by this technique, whereas techniques like the tensor splats hide the central region.

Figure 4.42: Tensor Shadows for a numerical metric of two colliding black holes, shown for different time
steps at T = 1, 26, 30 (from left to right). The upper row displays the top view, lower row is the side
view. Note the mutating geometry of the dark structure as it changes with the view direction. Regions
of increased space stretching become visible.

Advantages of this visualization method is are its perfect suitability to time-dependent data and
independence from positive definiteness and symmetry of the tensor field. Also, it is fast because no
eigenvectors/eigenvalues computation are involved, but it is also slow because images are view-dependent
and need to be recomputed with every change of view. Medium-sized datasets can still be used interac-
tively with several frames per second, depending on available hardware.



138 CHAPTER 4. RENDERING ALGORITHMS

Tensor Schlieren

Figure 4.43: Tensor Legend for the Schlieren technique: The glyphs are Laminae oriented according to
the dominant eigenvector and shaped by the median and minor eigenvalues.

Let us try to imagine “the optimal case” of tensor field visualization. One question arising first is what
we want to achieve. For point-like inspection of a data set, some iconic technique visualizing a tensor
object at a single point with all its properties there might be desirable. Maybe also including some small
neighborhood around, like a plane or a small cube. However, for inspection of a huge three-dimensional
data set and finding global structures and features such a technique is not appropriate, because pointwise
icons require too much concentration on each point and they usually suffer under the view occlusion
problem. For vector fields thus pointwise arrow icons are replaced by integral lines which may be more
appropriate to display the global flow, so we may ask what is the “global flow” and the most intuitive
interpretation of the action of a tensor field?

Thus we ask: what actually happens in curved space, what is the meaning of the metric tensor field
as given in a coordinate volume? The answer is that it specifies the physical distance among neighboring
points: even if they might reside regularly distributed in a coordinate space, the distance from one point
to another one might be stretched very large, while others are compressed. So the physical grid of points
is actually geometrically strongly distorted as compared with the coordinate grid. When thinking of a
metric tensor field, it can be seen as the description of space stretching and contraction in each point of
a given data volume. At each point the physical distance to its neighboring points is given by the metric
field. In some sense, it gives the “density” of (physical) space as seen in a given data cube (coordinate
space).

Figure 4.44: Schlieren photography: Small fluctuations in the the density are enhanced a special point-
like intense light source. Images courtesy by J. Kim Vandiver [Set01].

Thus, when the “best” solution of computing an embedding of all points is not possible, were to at least
display this “stretching” density. It is not a scalar field, because it is different in each direction. A nice
inspiration how this could be done is given by the technique of Schlieren photography (fig. 4.44), which is
used to display small fluctuations in the density of waves and turbulences within air: non-turbulent air is
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kind of a “basic color”, whereas wave fronts appear as brighter and darker areas. However in contrast to
a true (scalar) density, the “tensor field density” one “depends on the direction”. Schlieren photography
is able to display the small convections of flowing air as sharp, small crisp details, thus encoding also
directional information, i.e. the flow direction of the air in addition to the density fluctuations. So ideally
a rendering technique for tensor fields could cope a similar impression: display density fluctuations and
encode directional information at the same time.

The idea is to use the same appearance for a tensor field: “positive stretching” should be rendered
lighter than the background, “negative stretching” (contraction) darker than the background. In contrast
to a scalar field, we also need to encode directional information: in which direction does the stretching
occur? That can be done via the orientation of the “local wavefront” of the artificial Schlieren image.
It is given by the maximal eigenvector, the coloring is determinable by the maximal eigenvalue. The
corresponding technique, hereby called “Tensor Schlieren” is to use small cell-sized Laminae which are
oriented normal to the maximal eigenvector and transparency set according to the maximal eigenvector.
The area size of the laminae is further determined by the minimal and median eigenvectors as well, such
that this information is available as well.

Figure 4.45: Tensor Schlieren for the Kerr Metric. Two-dimensional slice and three-dimensional data
volume. In both cases, the laminae (see 4.2) indicating the maximum eigenvector are rendered transparent
when they are parallel to the view plane.

Consequently, if we look at a tensor field from a direction orthogonal to its maximal eigenvector
orientation, it will be rendered by the background color, i.e. become invisible, since the laminae are
oriented orthogonal to the screen as well. The more the eigenvector field deviates from this direction, the
more prominent it becomes. In the case of the Schwarzschild or Kerr metric, the dominant eigenvector
field is ~∂r, so all laminae will be oriented like portions of a spherical surface, being invisible tangentially
but standing out like a spherical surface when looking directly toward the black hole, see fig. 4.45. The
result are spherical shells with increasing visibility close to the event horizon.

Tensor Schlieren provide means to visualize an entire three-dimensional volume in a coordinate-
independent, smooth way. However, the results are not convincing because the directional information of
the laminae is lost within multiple layers of laminae. Also, the transition between neighboring laminae
leads to confusing artifacts.
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Tensor Splats

(a) Tensor Ellipsods (b) Tensor Splats

Figure 4.46: Tensor Legend: Ellipsoids incorporating the tensor field’s value at each point in space
is replaced by transparent textured splats. Isotropic regions are rendered transparently to discard any
visual directional preference there.

Tensor Splats [BH03, BH04] is a newly invented technique that is derived from the Tensor Schlieren
idea. The idea is to reflect the properties properties of planarity, sphericity and linearity (2.3.2) in a
better way, since these quantities provide a visual clue to the tensor behavior in a more direct way than
eigenvalues. In [WMK+99] a combination of a line segment, a disc and a sphere were used to draw an
icon at each vertex point; each of these icon components is scaled by the respective quantity, yielding
mostly spheres in regions high isotropy, disks in regions with dominant planarity and line segments like
in mainly linear regions. Combinations of these icons show the relative size of these components. It gives
correct visual impressions for isotropic regions, because the (undefined) maximum eigenvector does not
contribute to the spherical icon component.

However, while this technique appropriately displays the tensor classification at each point and is thus
good for pointwise analysis of the data, it suffers from view occlusion problems. The interesting part of
a tensor field are actually the non-isotropic regions, where certain directions are preferred to others. To
hide these isotropic regions we can just map the sphericity component to the transparency of the icons,
thus clearing the view to the interesting areas. To further reduce the view occlusion problem, instead
of drawing an opaque disc a polygon is drawn which is completely transparent at is edges (a “splat”
[CM93a]), thus “fading out” and smoothly overlapping with the splats of the neighboring vertex icons.
This splat is oriented by the maximal eigenvector, but fades out to become invisible in isotropic regions.
Furthermore, it is not axially symmetric around its normal vector (which is the maximal eigenvector),
but elliptically scaled according to the two orthogonal eigenvalues.

The idea is to employ flat, planar but transparent icons that are able to encode the same information
content as an ellipsoid. These icons resemble splats which fade out smoothly. They may also overlap,
similar as in the spot noise technique [CM93b], but sustaining the directional information provided by the
tensor field. In contrast, splats utilized for volume rendering are always oriented parallel to the view plane
and cannot communicate directional information. Keeping in mind that we are primarily interested in
this information, it is reasonable to render isotropic regions completely transparent. As the eigenvectors
have no meaning there, the only information available in isotropic regions is the trace of the tensor field, a
single scalar, which can also be rendered by standard volume rendering, if of interest at all. Otherwise, in
planar regions with two possible directions, a transparent disc with gaussian-like spherical transparency
is an appropriate icon, while in linear regions a line segment is appropriate. To blend these two cases
we may impose a one-dimensional periodic texture, e.g. some sinusoidal intensity, on the disc which
indicates the direction of the larger eigenvector/eigenvalue pair on the dominant plane of the two largest
eigenvector/eigenvalue pairs. The texture is scaled by the linearity factor cl, thus stretched infinitely in
planar regions with cl = 0 and occurring exactly once per splat for cl = 1. The resulting icons are shown
in figure 4.46.



4.3. STUDYING RELATIVISTIC TENSOR FIELDS 141

This technique is similar to the splatting technique which is employed for volume rendering of un-
structured grids [Wes90]. However, for volume rendering purposes these splats are always oriented to be
parallel to the screen (i.e. they are are view-dependent), whereas the Tensor Splats are oriented fixed in
space (i.e. they are view-independent and can be put into an OpenGL display list to enhance rendering
speed). This view-independent orientation, an artifact for volume rendering purposes, is a desired effect
for this tensor field visualization, because it contains the directional information in the tensor field. It
tells in which direction the tensor fields allows fastest/slowest traversal, yielding a nice “hurricane-like”
cloud effect of overlapping layers as seen in fig. 4.47.

Figure 4.47: Tensor Splat applied to the metric tensor field of colliding black holes, displaying the
whirling of spacetime around the gravitational throat.

The overall intuitive perceptibility of the resulting image is good even for large, complex tensor fields.
It provides sufficient parameters to tune the visualization from raw data mining purposes (qualitative
analysis) to detailed per-point property inspection (quantitative analysis). The technique is able to display
multiple tensor quantities at each point in an a-priori independent way, much more than contained in the
original field, so the visualization method is basically over-determined. However, this is not bad, because
by using several ways to display basically the same quantity the spectator gets a visual impression of these
relationships and can then fill in information in case it is visually hidden in some regions by switching to
the visible components.

~vmax splat orientation 3
λmed/λmed splat ellipticity 1
trace splat size 1
sphericity transparency 1
linearity first color 1
planarity second color 1
linearity/planarity threshold icon change 1

Since the perceptiblity of the splat orientations is relevant for this visualization method, it is useful to
enhance its appearance by using a non-spherical splat shape – which even improves the rendering speed by
reducing the number of triangles to be drawn – and by adding a one-dimensional radial stripe texturing.
This texturing may reduce the rendering speed somewhat (depending on the graphics hardware), but
helps to dissolve the per-vertex appearance into a shade of smoothly overlapping stripes which indicate
the action of the metric tensor field through some data volume. In this respect, the tensor splats method
is similar to the two-dimensional method of van-gogh inspired tensor icons[LAK+98].

We also remember that by representing a tensor ellipsoid via its eigen decomposition, we also know
the quadric surface of the inverse tensor (Gij)

−1 by inverting the eigenvalues λi → 1/λi. It is thus easy
to switch among a visualization of the tensor field and a visualization of the inverse tensor field; both
might help to understand the properties of the tensor field, although the physical interpretation might
be different. Examples are given in the application sections. The one-dimensional texturing on each
splat can be freely scaled by a user-adjustable parameter to reveal the most pleasant overall appearance.
In regions with non-zero linearity there is thus the freedom to specify how many stripes per splat, or
visually: “needles per voxel”, shall be used for a fixed cl value. In any case, regions with higher linearity
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(a) Ellipsoids of the inverse
tensor.

(b) Inverse tensor ellipsoids
with splats of the original ten-
sor.

Figure 4.48: Glyphs of the inverse tensor. They are always orthogonal to the original tensor. whereby
linear and planar shape are exchanged.

will be built from more and smaller needles, whereas regions with lower lineary will fade out to smoother
appearance. Consequently, since the structural information is rendered with a higher resolution than the
original data source, the resulting image should be inspected with higher pixel resolution as the data
source.

Figure 4.49: Transition from separate icons to continously smooth lines via scaling of the transparent
splats: scale factor .2 (top left), .4 (top right), .8 (bottom left), 1.6 (bottom right). The data set is highly
linear at the center but mostly planar at its borders.

If the splat diameter is an integer multiple of the cell size – which is constant only on a uniform
grid –, secondary maxima of the periodic splat texture will coincidence, thus smoothly forming a line, as
illustrated in fig. 4.49. The visual result looks like an integration line along the minimum eigenvector,
but without no actual integration at all.

To enhance the transition from linear to planar regions, we use a colormap depending on

cf :=
cl

cl + cp
≡ λmax − λmed

λmax + λmed − 2λmed

that specifies the location of a tensor shape on the bottom edge of the tensor legend triangle fig. 2.10.
The colorization factor cf becomes undefined in completely isotropic regions, where all eigenvalues are
identical. However, this does not harm, because isotropic regions are rendered completely transparent
(i.e. without issuing any OpenGL directives there, thereby also improving rendering speed), such that an
eventual color value is irrelevant. Our primary encoding is to use complementary colors, e.g. mapping
cp = 1 to red and cl = 1 to green. Other color codings are possible as well, and especially encoding the

planar linear

Figure 4.50: Color Encoding of cf , i.e. the cs = 0 line in Fig. 2.10.

trace of the tensor field as luminosity together with color hue as linearity measurement is a reasonable
option.
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Benefits of the Rendering technique

The tensor splat technique offers the following advantages:

• no isotropy artifacts: in contrast to many anisotropy enhancing visualization methods, nothing
“weird” happens in isotropic regions, where the eigenvectors become undefined, i.e. no direction is
suggested where none is preferred.

• grid independence: The rendering technique works point-wise; it is thus independent from the
topological structure of the underlying data discretization scheme and is not limited to uniform
cartesian grids, but can be applied directly to tetrahedral grids or adaptive mesh refinement (AMR)
data.

• applicable to dynamic data: The technique is completely deterministic, i.e. it does not make
use of random noise like in LIC [Sta98, IG97], and thus is perfectly suited for time-dependent data,
revealing smooth animations.

• fast: The graphics primitives can be put into OpenGL display lists, thus achieving interactive
rendering speeds and high-speed interactive animations of large data sets. Furthermore, some
rendering parameters – like the number of stripes per splat element – can be set outside of the
display list, thus fine-tuning of the visualization can be done interactively in real time.

• adjustable: by changing the diameter of the tensor splats, the number of texture stripes per tensor
splat and transparency parameters the image can be adjusted from a global smoothed appearance
that provides a raw qualitative overview of large structures into fine, point-wise icons that can be
inspected point by point for data debugging and quantitative analysis of tensor values.
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Application to the Schwarzschild Metric

For our visualization purposes we are only interested in the spatial part of the four-dimensional Schwarz-
schild metric (2.52). We see immediately that the radial eigenvector ~∂r is dominant with eigenvalue

grr = 1/(1 − 2m/r) > 1, whereas the angular eigenvalues corresponding to ~∂ϑ and ~∂ϕ are exactly
like on a sphere, so no direction within concentric spherical shells is preferred. The radial eigenvalue
grr = 1/(1− 2m/r) increases for r → 2m with r ≥ 2m, the location of the event horizon. This indicates
that spatial radial distances between static observers become longer close to the event horizon and even
infinite at the event horizon itself (see also fig. 2.11).

Fig. 4.27 shows the tensor ellipsoids of the spatial part of the Schwarzschild metric (2.52), discretized
on a uniform cartesian grid. The tensor ellipsoids of the metric can be interpreted as the appearance of a
“flash of light” in the current coordinate system. In flat space, light would propagate into all directions
equally, thus yielding a perfect sphere. When looking at a curved spacetime in some coordinate system,
this is no longer the case and light appears to propagate slower in some direction due to the larger distances
it has to travel. We see this behavior reflected in the tensor ellipsoids, Fig. 4.27 (left), flattening radially
close to the event horizon, indicating that the physical distance between two radially separated points
becomes very large there. Nevertheless light traveling tangentially is uninfluenced by the gravitational
field. The metric ellipsoids can be understood as the size of a “unit sphere” or as “grid compression”.
The inverse tensor, Fig. 4.27 (right), is a direct measure for the grid stretching and displays how much a
unit coordinate distance is stretched in physical space.

(a) Schwarzschild Splats (b) Inverse Splats

Figure 4.51: Tensor splats on a 2D slice revealing the radial grid stretching close to the event horizon.

We can imagine the tensor ellipsoids as circles imprinted on the surface of the isometric embedding
surface in Fig. 2.11, but we view them as projection on the flat (coordinate) plane above. Clearly, the
projected circles appear distorted there, exactly as in Fig. 4.27 (left). The tensor ellipsoids directly display
this behavior, while sustaining the spherical symmetry within a three-dimensional volume.

The tensor field thus contains no linear but only planar regions, whereby the anisotropy is highest for
r → 2m (the “event horizon” of the black hole). This behavior of radial stretching is easily depicted by
the tensor splats, fig. 4.51. as radially oriented planar discs (fig.4.51(a)) indicating light propagation. The
inverse metric (fig.4.51(b)) appears as radial “needles”, indicating the pure radial stretching toward the
event horizon as well. While both images, the tensor and the inverse tensor, provide the same information
content, it is still useful to be able to switch between both visual representations.

The visualization method is not free from view occlusion problems, so in cases where one method or
one region is hardly visible in one representation, the inverse representation might still provide useful
insight. It is thus good to become familiar with both views, even though the direct physical interpretation
is different.



4.3. STUDYING RELATIVISTIC TENSOR FIELDS 145

Application to the Kerr Metric

The Kerr metric (2.53) is no longer spherically symmetric for angular momentum a > 0, but just axially
symmetric around the rotation axis. We can see this property reflected in fig. 4.52 and expect linear

Figure 4.52: Kerr Ellipses. It is hard to see anything, but with good will we can spot that the ellipses
flatten radially and are squeezed longitudinal while stretched axially at the equator.

regions for a > 0. The physical interpretation thus reads off that light may travel easier towards the pole
than around the equator, i.e. when measuring a circumference then a (coordinate!) ring around the pole
will be shorter than a ring residing within the equatorial plane. So physically a coordinate sphere close
to the horizon is more like an ellipsoid that is flattened at the poles. However, it is not an exact ellipsoid,
the correct geometry of the shape is an embedding[NH96, BAS02]. For large angular momenta, such an
embedding no longer exists; the gaussian curvature becomes negative at the pole and there is no way to
display an axially symmetric surface with negative curvature within R

3.

Tensor Splats are able to exhibit the contrast among linear (in the equatorial plane) and planar regions
(at the poles) quite prominently. We find radially oriented discs close to the poles; in the equatorial plane
they morph to needles parallel to the rotation axis, see Fig. 4.53. We easily read off that light traversal
towards the pole is easier and thus latitudal distances are shorter than longitudinal ones. In other words,

Figure 4.53: Tensor splats (left) and inverse tensor splats (right) of the anisotropic Kerr Metric, seen from
the side, exposing linear and planar regions. Remarkably, the highest planarity values occur just outside
of the event horizon (as depicted in more detail in fig. 4.74) and is not continously growing towards the
horizon, as one might expect at first.
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the axial stretching close to the equatorial plane indicates that a coordinate sphere is actually a flattened
“bubbloid” with large equatorial circumference and short distance around the pole. The inverse splats

Figure 4.54: Reading off the geometrical properties of the Kerr spacetime via Tensor Splats: The more
metric ellipsoids (visible as “tensor splat stripes”) to cross in a certain direction, the larger is the physical
proper distance along this direction.

depict the same behavior by spherical laminae in the equator plane, depicting that space is not only
stretched radially, like at the poles and as we know from the Schwarzschild metric, but also tangentially
in the equatorial plane.

Figure 4.55: Kerr black holes spinning at 30%, 60% and 96%. The linearity around the equator increasing
with the angular momentum of the black holes becomes easily visible.
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Application to Numerical Data

Tensor Splats provide a direct visualization of the spatial metric γ of a numerical metric as described in
2.2.3. A current research topic is the numerical computation of the final orbit of two black holes before
they collide. Of special interest in numerical relativity is the occurance of “grid stretching”, the physical
distance between neighboring points on the numerical grid, which is determined via the numerically
computed metric γ. Due to physical or coordinate singularities they lead to numerical instabilities,
ultimately killing the entire simulation sequence. Their early detection and propagation properties is
thus essential for the development of improved evolution schemes.

Figure 4.56: Snapshots from a numerical black hole merger sequence, revealing a region of highly linear
grid stretching within a region of more planar grid stretching.

Fig. 4.56 demonstrates the tensor splats technique applied to a time sequence of such a numerical
evolution from two colliding black holes, just around the moment where these black holes merge to form
a common “apparent horizon”. The t→∞ limit of such collision process is known to be the Kerr metric
(2.53), although not necessarily in Boyer-Lindquist coordinates.

To determine the properties of the numerically resulting spacetime, we inspect the tensor field in
the equatorial plane in more detail. Tensor splats in the equatorial plane, Fig.4.57(a), display light
propagation, each splat element stands for e.g. one light second distance. The splats are mostly elongated
around the equatorial direction, so light can travel very easily around the black hole. They are also
somewhat elongated towards the pole, so light can travel tangentially to the pole with some hurdles.
They are hardly elongated towards the center itself, so radial distances are very large. We see that the
equatorial circumference is shorter than a a polar circumference. Alternatively we may inspect the inverse

(a) Metric (b) Inverse Metric

Figure 4.57: Equatorial plane. Two interpretations. Both tell that radial distances are very large, and
circumventing the black hole via the pole is harder than orbiting it in the equatorial plane.

metric fig. 4.57(b), which directly displays distances in the spacetime. The splats are stretched radially
very much, so radial distances are very large. They are also somewhat stretched in the axial direction,
so going around the pole is a larger distance than circumventing at the equatorial plane. A quadrant
of a dataset just after the merger of two black holes may be analysed using the Tensor Splats technique.
Inspecting the region that is rendered in red in fig. 4.58, we see these red planar splats oriented radially,
indicating mainly radial grid stretching, similar to the Schwarzschild metric. Additionally we see linear
grid stretching in the equatorial plane, indicating that light can hardly propagate in the ∂ϑ direction.
The linearity is stronger closer to the black hole, visible as the color change to green together with smaller
splat stripes. However, no such green region occurs close to the rotation axis, indicating that there is
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Figure 4.58: Quadrant with axial slice. At the rotation axis, the grid is stretched only radially, whereas
in the equatorial plane grid stretching also occurs in the axial direction.
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Figure 4.59: The true shape of a coordinate sphere in the numerical data, demonstrated by the apparent
horizon from another numerical black hole simulation where an embedding has been computed (see A.1).

only radial planar grid stretching. At the pole itself, all tangential directions are equally stretched (no
linearity), an expected symmetry around the rotation axis.

Our final interpretation tells us that equatorial circumferences are shorter than polar circumferences,
i.e. the true shape of a coordinate sphere is like a cigar along the axis of rotation. Note that computing
the actual shape would require determining the embedding[BAS02, Hot02], but such an embedding does
not necessarily exist and could provide insight only for a surface, whereas the tensor splat technique
allows to read off geometrical properties of an entire volume (provided its structure is not too complex).
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Spacetime of three colliding Black Holes

The tensor splats technique has been applied to a numerical spacetime of three colliding black holes with
no a-priori experience of its metric properties and no symmetries at all. The event horizon of the three
black holes merging into one had been computed by a newly developed event horizon finder (Peter Diener,
2003). It was found that in a single slice there were up to four regions of high linearity in the metric
tensor field which at first glimpse where not related to the event horizons. Isosurfaces of cl depicted these
regions as three connected loops enclosing the horizons (fig. 4.60, left column). Drawing tensor splats
in the entire volume is not useful in this spacetime. because the volume is hardly isotropic anywhere
such that transparently rendered regions are rare and the entire volume becomes overflooded with tensor
splat icons. However, if we restrict the tensor splat rendering to regions of a certain linearity range (draw
tensor splat only where cl,min ≤ cl ≤ cl,max), we imitate an isosurface with a three-dimensional “skin”,
which now also indicates the metric tensor field on this skin. In fig. 4.60, regions of linear stretching, i.e.

Figure 4.60: Left: isosurface around region with high linearity. Center: isosurface overlayed with tensor
splats. Right: tensor splats without isosurface.

the region where light travels mostly in one direction, are depicted by as green stripes. Red areas depict
areas of planar stretching, i.e. light may travel within a plane of two directions. When two regions of
high linearity merge, both directions are equivalently possible, resulting in red, planar regions there.

Figure 4.61: Event horizon (blue) of three colliding black holes and tensor splats.
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Application to Extrinsic Curvature

Although the Tensor Splats technique was primarily designed with having positive definite tensor fields
in mind, it can also be applied to other tensor fields, whereby negative definite areas are just ignored, i.e.
rendered transparently.

The “extrinsic curvature” K, a by-product from numerical relativistic calculations, describes the
embedding of the three-dimensional spatial slices within the four-dimensional spacetime. Its signature
may vary at each point. fig. 4.62 demonstrates the results of tensor splats on selected time slices of a
numerical simulation of colliding black holes. The extrinsic curvature tensor field may be interpreted as
the rate of expansion of a volume element at the numerical grid.

Figure 4.62: Tensor Splats Technique applied to the “extrinsic curvature” tensor field from a numerical
simulation of two colliding black holes. Large portions are negative definite; these regions are not dis-
played; only positive definite regions are rendered with smoothly overlapping tensor splats. Color gives
the rate of linear vs. planar expansion, while the texturing pattern reveals the expansion direction.
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Geodesic Emission

At each event in a spacetime one can find a coordinate system such that the metric appears locally as
a Minkowski metric, see def. 39. This is the coordinate system of a freely falling object. It does not
experience any acceleration (def. 46), which is equivalent with the fact that the first derivatives of the
metric tensor vanish in this coordinate system; consequently the Christoffel symbols, def. 2.34, are all
zero as well. However, the second derivatives of the metric tensor cannot be transformed to zero, which
means that even a freely falling observer may experience tidal forces due to a strong gravitational field.
Their strength is proportional to the size of the observer. Tidal forces become arbitrarily small and
vanish for objects of zero extend; so we may treat the coordinate frame of a freely falling observer as
Minkowskian in first order. These coordinates are called Riemannian normal coordinates. An infinite
number of such Riemannian normal coordinate frames may co-exist, because observers may be rotated
relative to another one, and they may pass a certain point with different velocities. All these coordinate
frames are related via (local) Lorentz transformations.

Figure 4.63: Visualizing the locally Minkowskian coordinates in the Schwarzschild metric: Orthogonal
coordinate axes appear tilted (left), the opening angle of light cones - physically 45o in their proper
coordinate - appears changed (right).

Given a spacetime metric in some arbitrary coordinate system, we may compute a locally Minkowskian
chart using the algorithm of Gram-Schmidt orthonormalization. For the purpose of a visualization tool we
restrict ourself to the spatial 3-metric. At first, one needs to specify two linearly independent tangential
vectors ~v1 and ~v2. They uniquely define three coordinate axis in the given coordinate system as the third
vector is easily known as the cartesian cross-product ~v3 = ~v2 × ~v2. We now want to compute a set of
basis vectors {~̄v1, ~̄v2, ~̄v3} which are orthonormal, i.e.

g(~̄vi, ~̄vj} = δi,j . (4.23)

In other words, the physical spacetime metric g becomes the Minkowski metric in the basis {~̄v1, ~̄v2, ~̄v3}.
As precondition we require that ~̄v1 points into the same direction as ~v1 (same direction of view of a
free-falling observer and observer at rest). Also, the orientation of the view should coincidence for a
free-falling and resting observer, i.e. if both make an image along their line of sight, these images must
not be rotated against each other.

Figure 4.64: The Geodesic Emission glyphs are only a local indicator; they do not display the path of
light rays, but just their initial conditions. They actually reside in the tangential space Tp(M).
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The algorithm of Gram-Schmidt orthonormalization works as an alternating operation of computing
the projection of tangential vectors (using the physical angle according to def. 2.25 ) and normalization
of the result (using the physical length according to def. 2.24) with the spacetime metric {~v1, ~v2, ~v3} −→
{~̄v1, ~̄v2, ~̄v3}:

~̄v1 =
~v1

√

|g(~v1, ~v1)
(4.24)

~̃v2 = ~v2 − g(~̄v1, ~v2)~̄v1

~̄v2 =
~̃v2

√

|g(~̃v2, ~̃v2)
(4.25)

~̃v3 = ~v3 − g(~̄v1, ~v3)~̄v1 − g(~̄v2, ~v3)~̄v2

~̄v3 =
~̃v3

√

|g(~̃v3, ~̃v3)
(4.26)

The vectors ~̃v2 and ~̃v3 are intermediate variables with no physical significance (they are orthogonal, but
not yet normalized). Once we have found a locally Minkowskian chart, others can be constructed via
Lorentz transformation in any direction with any speed in the range that is allowed by special relativity.

A freely falling observer measures angles in Riemannian normal coordinates. So if we want to compute
the view of an observer along the 2D surface of his view sphere as parameterized by altitude angle ϑ
and azimuth angle ϕ, we need to interpret these angles as given in his locally Minkowskian coordinate
system. A view direction vector ~v(ϑ, ϕ) is then simply given as a polar coordinate expression by these
basis vectors:

~v(ϑ, ϕ) = ~̄v1 sinϑ cosϕ+ ~̄v2 sinϑ sinϕ+ ~̄v3 cosϑ .

By the means of the coordinate transformation (4.24), (4.25) and (4.26) the view direction can be ex-
pressed in the outer coordinate system and used as initial conditions when computing a geodesic path
in the given spacetime coordinates. The surface built from the set of vectors of all (ϑ, ϕ) (i.e. the view
sphere as seen in outer coordinates) is identical to a tensor ellipsoid like in 4.3.2; this is clear from (4.23).

Figure 4.65: Many Geodesic Emission glyphs may be used together to a get a feeling for the properties
of the underlying spacetime. Rendering single glyphs is fast enough to allow interactive exploration.

The view of an accelerated observer at each point is identical to the view of an freely falling observer
(see e.g. N.Dragon’s essay “Geometry of the Theory of General Relativity” [Dra01]) if their velocities
coincidence at their meeting point. Thus the view as computed for a freely falling observer is also appli-
cable to accelerated observers, which also includes observers at rest in the given spacetime coordinates,
e.g. an observer hovering just above the event horizon of Schwarzschild static black hole.

Coordinate Transformation as Projection Matrix In a visualization environment using matrix
transformations for image generation like OpenGL, the (local) appearance of the coordinate space to an
observer residing at a certain point can be simulated by setting the transformation matrix (2.66) from
Riemannian normal coordinates into coordinate space as the projection matrix used for rendering.

In the special case of axial symmetry like the Kerr or the Schwarzschild metric, where the eigenvectors
are given by ∂r, ∂ϑ, ∂ϕ with respective eigenvalues Er, Eϑ, Eϕ, we may compute the OpenGL projection
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Figure 4.66: Appearance of the universe for an observer hovering close to the event horizon of a static
black hole: We inspect the change of a view cone which has identical proper solid angle (i.e. same
opening angle as experienced by an observer at a certain point). Its coordinate angle is smaller than
looking tangentially, so the radially directed view cone can catch up more light. Consequently, most of
the incident light from the universe will be concentrated in a very small view angle radially out- and
inwards as seen from the observer. The actual view is demonstrated in fig. 4.69.

matrix (actually the spatial 3 × 3 matrix modifying an existing projection matrix) by first changing
coordinates into a polar chart, applying scale factors according to the eigenvalues and transforming the
result back into cartesian coordinates. This matrix is given by A−1SA, whereby A−1 is the transformation
matrix αµ̄

µ from p.16 and A is the transformation matrix αµ
µ̄. The matrix S is a diagonal matrix built

from the eigenvalues. The resulting camera projection transformation matrix is then





1
r2

(
Erx

2 + Eϑy
2 + Eϕz

2
)

z
r̺

(
Erx

2 + Eϑy
2 − Eϕ̺

2
)

xy
r (−Er + Eϑ)

z
r3̺2

(
Erx

2 + Eϑy
2 − Eϕ̺

2
)

1
r2̺2

(
Erx

2z2 + Eϑy
2z2 − Eϕ̺

4
)

xyz
r2̺ (−Er + Eϑ)

xy
r̺2 (−Er + Eϑ) xyz

r̺3 (−Er +Eϑ) 1
̺2

(
Ery

2 + Eϑx
2
)



 (4.27)

whereby ̺ :=
√

x2 + y2 and r :=
√

x2 + y2 + z2. Note that this matrix is the unit matrix for Er = Eϑ =
Eϕ = 1. For a metric that is diagonal in polar coordinates like the Schwarzschild metric, the eigenvalues
are simply its diagonal components, i.e. Er = grr, Eϑ = gϑϑ and Eϕ = gϕϕ.

Figure 4.67: The camera projection matrix is such that the metric ellipsoids (same as on p.128) are
“unstretched” to become spheres again. Left image shows metric ellipsoids in a closeup view, while the
right image demonstrates the effect of the projection matrix switched on. Note that the apparent size of
the BH virtually shrinks – this effect is discussed more detailed in fig. 4.69.
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Figure 4.68: (Small) geometrical objects are transformed by the metric tensor field identically to light
spheres. The apparently radially crunched spaceship appears undistorted once we move to its location.
Then, all other spaceships which are more distant to the black hole appear to be radially stretched.

Figure 4.69: When approaching the black hole, its apparent size first increases, similar to approaching a
planet from a spaceship. However, as the enter the region of high space curvature, at a certain distance
the shape of the BH shrinks again. This indicates that we now “feel” the radially stretched distance -
which actually becomes infinite up to the event horizon. The closer we try to come, the further away it
appears. This effect is similar to the view of an accelerated observer in special relativity, who might keep
the shape of an approached object at constant apparent size by adjusting his acceleration such that the
effect of increasing light aberration and decreasing distance just cancel.
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Generalization to Four Dimensions

Up to now, we discussed techniques for tensor fields on a three-dimensional manifold. However, as
mentioned before, the interpretation of a tensor by inspecting close points as expressed by eq. (4.14) is
perfectly suitable for four-dimensional spacetimes with pseudo-Riemannian metric tensor fields as well.
Here, we preferably set the constant C to zero, then ε(p0) consists of all lightlike events around the point
p0. In a four-dimensional spacetime, this set of lightlike points is a volume. It is the set of all points
which are causally connected to a specific point. Since causal actions travel with the speed of light, it is
reasonable to ask for all points which reside the same amount of time in the past. This set of points will
be a sphere, or a circle when inspecting a slice of the spacetime. A nice example is given in N.Straumann’s
book [Str91] in fig. 7.2, where these so-called “navigation circles” demonstrate the causality relationships
of the ergosphere around a rotating black hole.

We may compute such local navigation spheres at some point by looking at the causal distance along
some spatial direction ~u, where ~u is a unit vector in our coordinate system. Light travels along the
four-vector u = (t, λ~u) and fulfills the condition g(u, u) = 0, thus yielding a quadratic expression in λ. It
tells us the radial extent of the navigation sphere in the direction ~u:

0 = g(u, u) = gttt
2 + 2λtgtau

a + λ2 gabu
aub

︸ ︷︷ ︸

−γ(~u,~u)

. (4.28)

This equation describing the shape of a physical sphere of light after some time t corresponds to an ellipsoid
with its center shifted from the origin of the light sphere. We can see this by setting λ~u := ~v+ ~w(t) such
that only the vector ~w(t) depends on t. Inserting into (4.28) yields

0 = gttt
2 + 2tgtav

a + 2tgtaw
a − γ(~v,~v)− 2γ(~v, ~w)− γ(~w, ~w)

We can bring this equation into the pure quadratic form of an ellipsoid around the origin

R2 = γ(~w, ~w)

with
R2 := gttt

2 + 2tgtav
a − γ(~v,~v) (4.29)

by setting the term
2tgtaw

a + 2gabv
bwa = 2tgtaw

a − 2γ(~v, ~w) = 0

to zero. The vector equation
tgta + gabv

b = 0

can be solved by multiplication with the inverse 3-metric gab such that

vb = −tgtag
ab =: −tβa

where β is (the spatial component of) the shift vector field from 2.2.3. Inserting into (4.29) gives

R2 := gttt
2 − 2t2gtaβ

a + t2gabβ
aβb = t2 [gtt − gtaβ

a] = t2 [gtt + γ(β, β)] ≡ t2α2

with α the lapse function from 2.2.3. Thus,

vertex fiber visualization methods for three-dimensional spatial tensor fields can be
generalized to a four-dimensional spacetime by drawing a sequence of vertex glyphs
shifted by a vector t~β and scaled by tα, where t is a parameter of the sequence.

Of course, not all visualization methods for 3-metrices are equally applicable. Tensor Ellipsoids 4.3.2,
Tensor Glow 4.3.2 and Tensor Splats 4.3.2 are good candidates. Multiple icons according to a set of t
parameters are to be drawn, whereby the transparency of the icon fades with t2 - this yields a direct
physical interpretation as an “object of light being emitted at a vertex point”.
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4.3.3 Indirect Visualization

Scalar Properties of Tensor Fields

More experience exists for visualizing scalar fields than for tensor fields - e.g. scalar fields can be rendered
directly with graphics hardware and can be interpreted easily. Inspecting the components of a tensor
field is straightforward, and can be useful for early detection of outstanding features, e.g. error prone
data generation. Some tensor components might also have a direct physical meaning.

However, for a physical understanding of the properties of the underlying tensor field looking at the
components is not of much use. fig. 4.70 shows two-dimensional slices from a numerical metric of two
colliding black holes, arranged like the matrix representation in cartesian coordinates. Some features

Figure 4.70: The nine components of the (symmetric) metric tensor field of a numerical simulation of
two colliding black holes, colors ranging from [−10, 10].

appear to be outstanding, but their interpretation isn’t straightforward. A transformation into another
coordinate system might help, in particular as we might note some spherical structure. However, whatever
coordinate transformation we might employ, the tensor components will depend on this choice and we
can never be sure whether we relevant features of the data set or “artifacts” due to the chosen coordinate
system.

Inspecting eigenvalues fig. 4.71 of the tensor field provides a coordinate-independent view. For three-
dimensional tensor fields we are done with avoiding coordinate-artifacts, but for tensor fields originating
from numerical relativity one must also keep in mind that the three-dimensional metric is just a timelike
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projection of a four-dimensional metric, so there is one more coordinate choice involved as well. Only a

Figure 4.71: Eigenvalue fields derived from the metric field. We see that one eigenvalue is dominant, at
least in the outer regions. Due to the absolute scale, we cannot tell if the same is true in the inner region.

full four-dimensional tensor field visualization method were able to depict a complete coordinate-artifact
free view. Common three-dimensional tensor field visualization methods, the mere interest from other
application areas than general relativity, can only provide a limited insight here, but is still useful to
inspect numerical evolution schemes, where the effects of timelike slicing on the projected metric field is
of central importance.

Eigenvalue fields still need some more interpretation. More insight might be given by looking at the
shape factor fields as described in 2.3.2. The shape factors fig. 4.72 provide information about the number

(a) Linearity cl (b) Planarity cp (c) Sphericity cs

(d) Colormap range (0, 1)

Figure 4.72: Tensor shape fields derived from the metric field, displaying the relationships between the
eigenvalues. We immediately see that the tensor field is mainly isotropic (spherical) at the borders but
contains a ring-like region of highly linear stretching.

of preferred directions in the tensor field and immediately tells if some grid stretching e.g. occurs on one
or two directions. Isotropic regions are easily found. What we don’t know yet from these images is the
actual direction of the stretching and its absolute value.
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Figure 4.73: Shape Factors in the Kerr metric: Isosurface of the Planarity with Linearity as color
encoding. Interestingly, the Planarity is highest in a torus around the Kerr black hole, but neither at the
horizon nor far away.

Figure 4.74: Shape Factors in the Kerr metric: The maximal planarity occurs in a toroidal region at
the equator outside of the event horizon, but is not related to the Ergosphere. Left: 93% spin, right 30%
spin.
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Radiation Scalars

In the context of general relativity, the prediction of observable quantities describing gravitational radia-
tion (which can be seen as fluctuations in the metric tensor field) are of special interest for the experimental
detection of gravitational waves. However, gravitational energy cannot be “localized” [Str91], it is not
possible to define some “density of gravitational energy”. At each point in space, the influence of grav-
itational energy (“acceleration”, “gravitational force”) on an observer’s movement is expressed by the
Christoffel symbols (2.34), which can be transformed away by a proper choice of coordinates, see 2.1.2.
So when some definition of gravitational energy were based on the Christoffel symbols, some observers
would see gravitational energy, others don’t. Thus in an arbitrary spacetime one cannot be sure if the
resulting quantity is due to gravitational radiation, or if we are just looking at flat, radiation-free space
in a weird coordinate system. Coordinate-invariant definitions are thus essential.

This search has only been carried out within the context of general relativity, but it might be of interest
to apply the ideas also to other tensor fields from other scientific domains. In general relativity these fields
are used to inspect properties of the 4-metric of signature (+,−,−,−), similarly adjusted definitions may
be useful to inspect positive definite 3-tensor fields like the diffusion tensor field in medicine or the stress
tensor field in computational fluid dynamics.

Curvature Invariants

While the first derivatives of the metric tensor field – and with it the Christoffel symbols – can be
transformed away, its second derivatives cannot be brought to zero by a proper choice of coordinates.
I.e. the derivatives of the Christoffel symbols, which constitute the Riemann tensor Rδ

αβγ , cannot be
transformed away. Therefore scalar expressions which are derived from the Riemann tensor provide
coordinate invariant descriptions of the underlying metric tensor field. They at least involve the second
derivative of the tensor field.

From the 256 components of the rank-4 Riemann tensor, only 20 are independent due to its symmetry
properties. Contraction of the upper and lower index of the Riemann-tensor yields the rank-2 Ricci tensor
Rαβ = Rγ

αβγ . Due to the symmetry of the Riemann tensor Rδ
αβγ = Rδ

βαγ , the Ricci tensor is symmetric as
well and contains 10 independent components. The other 10 components of the Riemann tensor construct
the trace-free rank-4 Weyl tensor Cγδ

αβ . The trace of the Ricci tensor R = Rα
α is called the curvature

scalar. It is part of the Einstein Field equations of the gravitational field and is zero in the absence of
matter. Thus, it is a suitable indicator for matter density, but not for pure gravitational radiation which
propagates in vacuum spacetimes.

Other scalar invariants can be constructed from the Riemann tensor. In a general spacetime possibly
containing some matter distribution there are fourteen independent scalars [Pet69]. In vacuum the Ricci
tensor is zero, so any indicator of gravitational radiation must be based on the Weyl tensor. By proper
choice of coordinates, any 4 of the 10 independents components of the Weyl tensor can be brought to
zero, leaving 6 fundamental real invariants known as the eigenvalues of the Weyl tensor. Since the trace
of the Weyl tensor and its dual are zero, just four scalar values suffice to reconstruct all six values. These
4 so-called Riemann invariants [Wit59] can be expressed as the two complex quantities:

I :=
1

16

(

Cγδ
αβC

αβ
γδ − iC

γδ
αβ

1

2
εµν
γδC

αβ
µν

)

(4.30)

and

J :=
1

96

(

Cγδ
αβC

µν
γδ C

αβ
µν − iCγδ

αβC
̺σ
γδ

1

2
εµν
̺σC

αβ
µν

)

. (4.31)

They are the only independent, algebraic curvature scalars one can construct in a vacuum spacetime.
However, they are not yet appropriate as a measure of gravitational radiation, since e.g. in the radiation-
free Kerr-metric they are still non-zero [BB02].
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Newman-Penrose Formalism

The Newman-Penrose Formalism [NP62, Ste91] encodes the ten independent components of the Weyl
tensor into five complex quantities denoted by Ψi, called the curvature components. They are independent
from the choice of coordinates, but allow a free choice “in which direction” the curvature components
shall be read off. This choice determines the appropriate physical interpretation of the resulting numbers,
like “radially outgoing” and “radially ingoing” gravitational energy (as depicted by fig. 4.75). However,

Figure 4.75: Outgoing and ingoing gravitational radiation for a subcritical “Brill wave“ (2.3.1). Initially,
both components are overlayed at the same geometrical location, thus appearing violet. During evolution,
the incident blue Ψ0 and outgoing red Ψ4 component separate. The lapse function α, indicating strong
gravitation, is displayed as height field below. Images based on these quantities have been used for many
book and magazine publications [Sch03, Ben01a, Smo99, Ben03, Ben02b, Eng02, Ben00, Gre99].

apparently straightforward interpretations like “radially” are problematic if there is no radial symmetry at
all in a spacetime. Thus, such interpretations are meaningful only for spacetimes that are asymptotically
flat at infinity and contain a reasonably defined “radial” direction.

The choice of “interpretation directions” is specified via one time-like (tµ) and three space-like (xµ,yµ,
zµ) vector fields that are orthonormal with respect to the given metric gµν . I.e. the vectors {vµ

(i)} =

{tµ, xµ, yµ, zµ} at each point obey the relationship vµ
(i)gµνv

ν
(j) = ηij . Note that {x, y, z} do not imply

cartesian coordinates, they may as well denote vector fields oriented along polar coordinates {r, ϑ, ϕ}.
See fig. 4.76 for demonstration of the Newman-Penrose quantities evaluated using a cartesian and a polar
tetrad.

The metric can be expressed via the corresponding covector fields v(i) µ = gµνv
ν
(j) as gµν = tµtν −

xµxν − yµyν − zµzν . A complex null tetrad is constructed from these via

kµ = (tµ − zµ) /
√

2, (4.32)

lµ = (tµ + zµ) /
√

2, (4.33)

mµ = (xµ − i yµ) /
√

2, (4.34)

m̄µ = (xµ + i yµ) /
√

2, (4.35)

where all vectors {l, k,m, m̄} are null, l, k are real and m̄,m are complex, whereby m̄ is the conjugate of
m. This null tetrad is normalized such that g(l, k) = −1 and g(m, m̄) = 1, whereas all other products
vanish. The Newman-Penrose quantities are then constructed from this complex null tetrad {k, l,m, m̄}
via contraction with the Weyl tensor:

Ψ0 = Cµνλξm
µkνmλkξ (4.36)

Ψ1 = Cµνλξk
µlνkλmξ (4.37)

Ψ2 =
1

2
Cµνλξk

µlν
(
kλlξ −mλm̄ξ

)
(4.38)

Ψ3 = Cµνλξl
µkν lλm̄ξ (4.39)

Ψ4 = Cµνλξl
µm̄ν lλm̄ξ . (4.40)

The Riemann invariants I (4.30) and J (4.31) are related to the these quantities via

I = Ψ0Ψ4 − 4 Ψ1Ψ3 + 3 Ψ2
2 and J =

∣
∣
∣
∣
∣
∣

Ψ0 Ψ1 Ψ2

Ψ1 Ψ2 Ψ3

Ψ2 Ψ3 Ψ4

∣
∣
∣
∣
∣
∣

.
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Figure 4.76: “Noisy” numerical dataset of gravitational energy released from a neutron star merger.
Isosurfaces of ℜΨ4 displayed in red, ℜΨ0 displayed in blue. Upper row: cartesian tetrad, ℜΨ4 depicting
“leftwards”, ℜΨ0 “rightwards” moving structures. Lower row: polar tetrad, ℜΨ4 depicting radially
outwards, ℜΨ0 radially inwards moving structures.

The Newman-Penrose quantities are used as an indicator of gravitational waves as they have a cer-
tain physical interpretation in the case of an asymptotically flat spacetime with radial symmetry. The
Newman-Penrose formalism allows to describes the Weyl tensor in a spinor basis with spin 2. The
peeling theorem (see e.g. Stewart [Ste91], p.130, for a general prove on arbitrary fields) states that
Ψi = O(r−(2s+1−i)), thus

Radial falloff behavior Interpretation using Ψir
3

Ψ0 ∝ 1/r5 Ingoing radiation, ∝ 1/r2

Ψ1 ∝ 1/r4

Ψ2 ∝ 1/r3 Equivalent of a rest mass, constant
Ψ3 ∝ 1/r2

Ψ4 ∝ 1/r Outgoing radiation, ∝ r2

The real and imaginary part of the Newman-Penrose quantities corresponds to the even and odd parity
of a gravitational wave radiation term as written in a Taylor series. The Newman-Penrose quantity Ψ4

is the preferred scalar field when inspecting data from numerical relativity to visualize the “outflowing
gravitational energy”, see fig. 4.77. For an axisymmetric collision of black holes the imaginary part ℑ(Ψ4)
vanishes, so this one is an indicator of non-axisymmetric properties of a gravitational wave.
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Figure 4.77: An outflowing intensity peak of gravitational radiation, rendered in red (Ψ4), is undesirably
reflected at the grid boundary, shown as blue (Ψ0) ingoing bow. Visualization of Ψ0 and Ψ4 helps to
detect such numerical artifacts. (Late time of fig. 4.75.)

Figure 4.78: An example where using Ψ4 gives an hint about the location of the event horizon, as
compared to the apparent horizon: certain structures visible in the Ψ4 field appear to fall inwards, even
though they originally are born outside of the apparent horizon. Watch the red-yellow intense structure
in the marked region falling in.
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Volume Rendering Lazarus Data

The Lazarus project, as it has been called by AEI researchers C.Lousto, J.Baker and M.Campanelli [JB02],
is an effort to merge the methods from analytic perturbation theory with full numerical methods. For
strong gravitational fields, like the merger of black holes, which are beyond the capabilities of perturbative
approaches, full numerical simulations are performed. When this evolutions fades down into some weaker
regime where the full numerical treatment becomes troublesome (even a static situation can be numerically
instable) but perturbative approaches are valid again, the perturbative analysis takes over and may
continue the computation of the numerically given spacetime.

These Lazarus data provide the complex Weyl Scalar Ψ4, as an indicator of the outgoing gravitational
radiation. They are given in polar coordinates as modes of a decomposition of the three-dimensional
spacetime around the rotation axis of orbiting black holes (ϑ = π/2 corresponds to the orbit plane):

Ψ4(t, r̄, ϑ, ϕ) =

∞∑

m=0

Ψm
4 (t, r̄, ϑ)eimϕ

The selected radial coordinate r̄ is similar to the radial coordinate in the Eddington-Finkelstein coordi-
nates of a static black hole:

r̄ = R+ 2m ln

(
R

2m
− 1

)

where r is the radial coordinate of the numerical cartesian x, y, z grid and m is the mass of the spacetime
as computed from the initial numerical spacetime (which actually by itself is the result of the numerical
evolution). In this coordinate system negative values of r̄ are possibleDue to the logarithmic scale, a
large domain far outside the original numerical spacetime can be covered, which is essential to read off
the gravitational wave forms generated by some gravitational strong event.

For visualization only the m = 2 mode Ψ2
4(t, r̄, ϑ) is used, because the other modes are mostly drowned

out by numerical noise. The full three-dimensional domain has to be reconstructed by adding the ϕ-term,
and the resulting location in polar coordinates has to be transformed into cartesian coordinates for final
display. For employing standard visualization algorithms like volume rendering, interpolation of the data
onto a uniform cartesian grid is required.

Figure 4.79: An outspiraling gravitational wave, as computed by the methods of the Lazarus project
[JB02] and visualized using fiber bundle operations.
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The procedure to perform the required visualization implemented upon the fiber bundle data model as
follows:
Task: Data from the Lazarus project are given as a complex scalar field on 2D axial coordinates {r, ϑ},
where ϑ is the usual altitude polar angle and r is the Eddington-Finkelstein radial coordinate. A three-
dimensional field may be constructed from these two-dimensional data by adding a e−i2ϕ term to the
data.These reconstructed data are thus uniform in polar 3D {r, ϑ, ϕ} coordinates. We require these data
on a uniform cartesian grid.

Input: The uniform {r, ϑ} axial coordinate positions and a complex value at each point.

Output: Data uniformly distributed in cartesian coordinates..

Figure 4.80: Volume rendering data from the “Lazarus” project: data are given uniformly in a two-
dimensional (r, ϑ) coordinates, procedurally extended to cover a polar grid (illustrated by the points) and
need to be interpolated onto a uniform cartesian grid.
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Procedure:

1. Construct complex polar field {r, ϑ, ϕ} data field via Ψ(r, ϑ) · e−imϕ

2. Transform coordinates of polar points into cartesian coordinates

3. Compute interpolation weights from the target grid (uniform cartesian coordinates) to the data
source grid (transformed cartesian positions)

4. Evaluate the data field on the source grid on the target grid via the interpolation weights.

Rdst{x,y, z} eval←−−−− Rsrc{x, y, z}

coordinate

x

transformation

Rsrc{r, ϑ, ϕ} explicit coding←−−−−−−−−−
eimϕ

Rsrc{r, ϑ}

Figure 4.81: Fiber bundle objects and operations involved in providing data stemming from the Lazarus
project for a volume renderer. Images created by this method can be found in [Ben01b, Geo01, Ben02a].
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Appendix A

Data Description and Algorithms

A.1 Examples of Fiber Bundle Data Model Descriptions

In this section a conceptual overview of how to describe various grid types is given. A specific grid type is
shown as a graph below the Grid group (section 3.1.1). As the data model is constructed by hierarchically
nested associative maps (3.1.2), at each leaf an identifier is mapped to the next subgroup object. The
following notations are used within the graphical layout describing a certain grid type:

• Text The identifier is a predefined, intrinsically known value. It must be exactly this value.

• "Text" The identifier is a freely selectable text. Restrictions are that predefined values must not
be used here. If the same identifier occurs in the same graph, then all occurrences must be identical.

• [Text] The identifier is a reference to an object named “Text”. If there is no such entry in the
graph, it refers to an external object, mostly chart objects. This notation is usual for representation
identifiers.

• T=23.4 A floating point number identifier; it is used for slices within a bundle group.

• (Text) Parenthesis around an identifier mean that this subgroup is a procedural one, ie. the

data within here can be computed on-the-fly from some parameters which are stored in this group
instead of a set of elements

• i0, j0, k0, . . . indices from the Index Space of depth 0, ie. point-related data

• i1, j1, k1, . . . indices from the Index Space of depth 1, ie. cell-related data

• {a, b, c} a set of exactly three elements

• {a, b, c, . . . } a set of a varying number of elements

• hierarchy entries within the atlas of a grid are rendered with thin lines, whereas the topology
subgroups of a grid have thick lines in the graph.
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A.1.1 Particle Sets

Point Sets

A set of points in a cartesian chart:

Grid

- Charts: the atlas on this grid
- "Cartesian Chart 3D" a chart object

- Points

- ["Cartesian Chart 3D"]

- Position: i0 7→ {x, y, z}
The grid atlas will not be shown in subsequent graphs, because it is mostly trivial information. The grid
atlas only is of relevance if multiple coordinate systems are used with known transformation rules. With
data fields defined on the point set, the grid atlas is omitted:

Grid

- Points

- ["Cartesian Chart 3D"]

- Position : i0 7→ {x, y, z}
- "mass" : i0 7→ m scalar field
- "velocity": i0 7→ vµ∂µ vector field

Point set with coordinates also known in a polar chart:

Grid

- Points

- ["Cartesian Chart 3D"]

- Position: i0 7→ {x, y, z} cartesian coordinates

- ["Polar Chart 3D"]

- Position: i0 7→ {r, ϑ, ϕ} polar coordinates

Scalar fields are independent from the coordinate systems and could thus be put into the parent Topology
group instead of a coordinate-specific representation. However, it is simpler to store all data fields in
the representation groups, such that some code only needs to inspect this group when seeking for a data
field. An implementation is assumed to be able to share the actual data, such that there is no significant
memory overhead.

The coordinate transitions from the Polar Chart 3D to the Cartesian Chart 3D may be done via
a usual standard transformation rule. However in general a transformation rule may involve some pa-
rameters, eg. when relating two cartesian charts via some rotation matrix. This rotation matrix (or the
transformation parameters in general) may be time-dependent, so it needs to be stored at least in some
slice group. Some coordinate system might be fixed for a specific grid object, so it makes sense to store
transformation parameters with each grid (eg. object-coordinates, world-coordinates). An example of a
grid atlas containing some transformation rules, dealing with multiple coordinate systems and transfor-
mation rules:
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Grid

- Charts
- Object Coordinates

- [World Coordinates] transformation parameters
- World Coordinates

- [Object Coordinates] transformation parameters
- Points

- [Object Coordinates]

- Position: i0 7→ {x, y, z} cartesian coordinates

- [World Coordinates]

- Position: i0 7→ {x̄, ȳ, z̄} rotated cartesian coordinates

Particle Trajectories and Geodesics

When a set of particles is evolving in time, some of these particles might leave the grid, others merge, split
up or are newly introduced. It is required to track this behavior. This is done by explicitly specifying
a representation of the successor’s Point Topology in a Point Topology. The positional data set of this
representation maps points from one time step to the next (or previous) ones.

-
4.0

Grid

- Points

- ["Cartesian Chart 3D"]

- Position: i0 7→ (x, y, z)

- [Points(t=6.0)]

- Position: i0 7→ { i0|T=6.0 , . . . } split up information-
6.0

Grid

- Points

- ["Cartesian Chart 3D"]

- Position: i0 7→ (x, y, z)
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A.1.2 Two and Three-Dimensional Geometries

Triangular Surfaces

A surface constructed by triangles:

Grid

- Points

- ["Cartesian Chart 3D"]

- Position: i0 7→ {x, y, z} coordinates of point i0

- Connectivity

- [Points]

- Position: i1 7→ {i0, j0, k0} points per triangle i1

A surface with additional reverse information about the triangles around each point:

Grid

- Points

- ["Cartesian Chart 3D"]

- Position: i0 7→ {x, y, z}
- [Connectivity]

- Position: i0 7→ {i1, j1, . . . } triangles per point i0

- Connectivity

- [Points]

- Position: i1 7→ {i0, j0, k0}
The reverse triangles-per-point information can be computed from the points-per-triangle array by an
inversion operations. Note that the representer of the triangles-per-point representation is the “Connec-
tivity” Topology object on the same grid.
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A triangular surface with points given in polar and cartesian coordinates:

Grid

- Points

- ["Cartesian Chart 3D"]

- Position: i0 7→ {x, y, z} cartesian coordinates

- ["Polar Chart 3D"]

- Position: i0 7→ {r, ϑ, ϕ} polar coordinates

- Connectivity

- [Points]

- Position: i1 7→ {i0, j0, k0}
A triangular surface with a data field given on the points and another one on the cells:

Grid

- Points

- ["Cartesian Chart 3D"]

- Position: i0 7→ {x, y, z} cartesian coordinates

- "value": i0 7→ d some scalar field
- Connectivity

- [Points]

- Position: i1 7→ {i0, j0, k0}
- "color": i1 7→ {r, g, b} some color for each triangle

It makes sense to store cell fields, which are related to a chart, in the representation of this cell in this
chart. An example are normal vectors of the cells:
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Grid

- Points

- ["Cartesian Chart 3D"]

- Position: i0 7→ {x, y, z} cartesian coordinates

- "VertexNormals": i0 7→ ~v normal vectors at each vertex
- Connectivity

- [Points]

- Position: i1 7→ {i0, j0, k0}

- ["Cartesian Chart 3D"]

- "CellNormals": i1 7→ ~v normal vectors for each triangle

The semantics of the “Positions” of a cell representation in a chart might be the barycenter of each
triangle.

Multipatch Triangular Surfaces

A triangular surface with some cell complexes that contain certain data, e.g. some labeling of surface
regions, called multiple “patches”:

Grid

- Points

- ["Cartesian Chart 3D"]

- Position: i0 7→ {x, y, z} coordinates of point i0
- Connectivity

- [Points]

- Position: i1 7→ {i0, j0, k0} points per triangle i1
- "Patches"

- [Connectivity]

- Position: i2 7→ {i1, j1, . . . , k1} triangles per patch i2

- "Labels": i2 7→ R e.g. temperature of each surface patch

The patches on the surface are described via a set of triangles, that is casted into a “Patches” Topology ob-
ject of index depth 2. Here, the surface patch is given by triangles, but another representation could
also refer directly to the related vertices. In this case the index depth 2 indicates that the representation
of a surface patch via vertices is incomplete, i.e. there needs to be additional structural (topological)
information of index depth 1. Otherwise, the patch would be indistinguishable from a polygon. As a
consequence, a polygon algorithm can be applied to the vertex representation of a patch, but patch-
specific algorithms cannot be applied to polygons, because these required intermediate structure within
the polygon.
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Regular Surfaces

A surface constructed by a regular mesh, each cell is constructed by exactly four vertices. The neighbor-
hood information is known intrinsically (details given in A.1.2) on the vertices and on the cells.

Grid

- Points

- (Neighborhood): i0 7→ {j0, k0, l0,m0}

- [Cartesian Chart 3D]

- Position: i0 7→ {x, y, z} coordinates of point i0

- Connectivity

- (Neighborhood): i1 7→ {j1, k1, l1,m1}

- [Points]

- (Position): i1 7→ {j0, k0, l0,m0} points per cell i1

The only data which need to be given explicitly are the point coordinates. The neighborhood information
arrays and the points per cell are known from the dimensional information of the surface.
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Images and Movies

A special case of quad-based surfaces are flat surfaces which are uniform in some chart. In this case
the positional component in this chart can be procedural as well and the entire data structure does not
contain any data sets at all. However, additional data fields can be added and provide the canonical
layout to store images. Free parameters of the image storage are the grid identifier, the field identifier
and the coordinate system under which it is stored. A sequence of consecutive images (animation/movie)
is naturally defined via the slice group. In this context a slice has the meaning of an animation frame.
The coordinate system selects among various representations of the same object; conceptually, all data
sets within a representation group have the same number of elements, ie. all images must have the same
number of pixels. It is appropriate to store viewpoint information in the corresponding chart object, so
the “representations of an image” refer to eg. the left and right bitmap of a stereo image, or to various
views of the same object from different locations. Multiple Topology object the ideal location to store
different resolutions of the same image (e.g. mipmaps), similar to refinement levels of an AMR grid.
Note that image data are associated with cells, not vertices of a grid. The field identifier is useful to
select different channels of an image, eg. RGB, CMYK, alpha channel etc. The Grid object identifier is
left free to allow arbitrary user-definable names to identify the image source and context. The following
table summarizes the mapping between fiber bundle data model groups and image properties:

Slice ←→ frames of an animation
Grid ←→ scenery description
Topology ←→ different resolutions
Representation ←→ different viewpoints
Fields ←→ color channels, transparency, . . .

By storing images and movies in this data model, the following features are available in a consistent and
natural way:

• multiple images per file (via multiple Grid identifiers)

• multi-channel images (via multiple Field identifiers)

• image sequences, e.g. animations (via multiple Slice instances)

• multi-viewpoint images, e.g. stereo images, tilings,. . . (via multiple Representations)

• multi-resolution images (via refinement Topology objects)
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Irregular Surfaces

An irregular surface is constructed by polygons, which have a varying number of points for each cell. The
only difference to a triangular surface is that the positional element of the connectivity is no longer of
fixed size:

Grid

- Points

- [Cartesian Chart 3D]

- Position: i0 7→ {x, y, z} coordinates of point i0
- Connectivity

- [Points]

- Position: i1 7→ {i0, j0, k0, . . . } points per cell i1

Each cell is constructed by a set of edges, whereby an edge is a set of two points. An additional Topology
object can be added to the grid to store this edge-wise information:

Grid

- Points

- ["Cartesian Chart 3D"]

- Position: i0 7→ {x, y, z} point coordinates
- Connectivity

- [Points]

- Position: i1 7→ {i0, j0, k0} the points per cell

- [Edges]

- Position: i1 7→ {̃i1, j̃1, . . . } the edges of a cell
- Edges

- [Points]

- Position: ĩ1 7→ {i0, i1} the points of an edge
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Unstructured Cell Data

Unstructured Cell Data (UCD) are like irregular surfaces, but each cell also consists of a number of faces.

Grid

- Points

- ["Cartesian Chart 3D"]

- Position: i0 7→ {x, y, z} point coordinates

- Connectivity

- [Points]

- Position: i1 7→ {i0, j0, k0} the points per cell

- [Faces]

- Position: i1 7→ {̄i1, j̄1, k̄1, . . . } the faces of a cell

- [Edges]

- Position: i1 7→ {̃i1, j̃1, . . . } the edges of a cell- Faces

- [Points]

- Position: ī1 7→ {i0, j0, k0, . . . } the points of a face

- [Edges]

- Position: ī1 7→ {̃i1, j̃1, . . . } the edges of a face
- Edges

- [Points]

- Position: ĩ1 7→ {i0, i1} the points of an edge

Tetrahedral Grids

Tetrahedral grids are simpler than UCD, because the cell size of the connectivity is fixed. Formally, the
same topologies exist on a grid as with the UCD grid, but the storage mechanism for the positional field
of the connectivity in the points representation is simpler. By omitting edge and face related information,
the description of a tetrahedral grid is very similar to a triangular surface:

Grid

- Points

- ["Cartesian Chart 3D"]

- Position: i0 7→ {x, y, z} coordinates of point i0
- Connectivity

- [Points]

- Position: i1 7→ {i0, j0, k0, l0} points per tetraedron i1
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Regular Grids

Regular grids are the higher-dimensional case of regular surfaces A.1.2. The neighborhood information
on points and cells as well as the points per cell information are given intrinsically here by n numbers,
which are called the size of the grid in each dimension. n is the dimension of the grid.

A regular neighborhood of dimension n can be defined recursively by the tensor product of one-
dimensional neighborhoods. In one dimension, the ith point pi has neighbors pi−1 and pi+1. Without
loss of generality, let us set i to 0 and inspect the indices of the neighborhood points. The point itself is the
image of the set Z := {0} and its neighbors are the images of the set I := {−1,+1}. The neighborhood
Rn of a point in n dimensions is described by the iterative formula:

Rn+1 := (Rn ⊗ Z) ∪ (Zn ⊗ I)
R1 := I

The (relative) regular neighborhoods therefore are:
n = 1 {−1,+1}
n = 2 ({−1,+1} × {0}) ∪ ({0} × {−1,+1}) ≡ {(−1, 0), (+1, 0), (0,−1), (0,+1)}
n = 3 {(−1, 0, 0), (+1, 0, 0), (0,−1, 0), (0,+1, 0), (0, 0,−1), (0, 0,+1)}
. . .

The regular connectivity is given by the nth tensor product of of the set {0, 1}n. Eg. in two dimensions the
(relative) connectivity of a cell is the set of points with indices {0, 1}⊗{0, 1} ≡ {(0, 0), (0, 1), (1, 0), (1, 1)}.
In the context of the fiber bundle data model, these n-tuples of indices are only used when neighborhood
or connectivity information is explicitly required by some algorithm. Otherwise, only the one-dimensional
indexing of point numbers is used.

A symbolic layout of a regular grid using procedural tensor product expressions for the neighborhood
and connectivity informations looks like this:

Grid

- Points

- (Neighborhood): i0 7→ (R0,n ⊗ Z0) ∪ (Zn
0 ⊗ I0)

- ["Cartesian Chart 3D"]

- Position: i0 7→ {x, y, z} coordinates of point i0

- Connectivity

- (Neighborhood): i1 7→ (R1,n ⊗ Z1) ∪ (Zn
1 ⊗ I1)

- [Points]

- (Position): i1 7→ {0, 1}n points per cell i1
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Uniform Grids

Uniform grids are special cases of regular grids, where the positional component is a first-order polynomial
expression of the multidimensional index (i0, i1, i2) in some chart, i.e. a linear map of the form f(x) =
kx+ d separately for each coordinate:

Grid

- Points

- (Neighborhood)

- ["Cartesian Chart 3D"]

- (Position): i0 7→ {bx + ∆xi
0, by + ∆yi

1, bz + ∆zi
2}

- Connectivity

- (Neighborhood)

- [Points]

- (Position)

The only data to be stored are the coordinates of the base point (bx, by, bz) and their coordinate spacing
(∆x,∆y,∆z). Data on a uniform grid are stored in the appropriate representation groups, eg.:

Grid

- Points

- (Neighborhood)

- ["Cartesian Chart 3D"]

- (Position): (bx, by, bz), (∆x,∆y,∆z)

- "density": i0 7→ ̺

- "energy": i0 7→ ε

- (Connectivity)

Structural information which is common for all fields is stored only once. Additional other charts and
data representations can be added to a uniform grid, but are not necessarily uniform. While the regularity
property is sustained under coordinate transformations, the uniformity property is not.
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Hierarchical Grids

Hierarchical relationships among elements of a grid can be formulated via additional Topology groups,
each of them describing a certain level of the hierarchy. The relative representation of the Topology
groups is the right place to store relationships among these levels:

Grid

- "RootLevel"

- ["FirstRefinement"]

- Position: i0 7→ {̄i0, j̄0, . . . } child relationship

- "FirstRefinement"

- ["RootLevel"]

- Position: ī0 7→ {i0, j0, . . . } parent relationship

- ["SecondRefinement"]

- "SecondRefinement". . .

Another view is given by the succeeding diagram (A.1), which displays a three-level hierarchical grid
with its Topology and Representations objects. The “Positions” field in the four Representation objects
provide sets of indices for each level’s element to its parents or childs (as future/past cones, see fig. 3.5).
These are integer coordinates of each element in another discretized topological space, like in fig. 3.6. An
implementation might store them explicitly (e.g. for refined unstructured grids) or extract the relevant
information procedurally from a set of bounding boxes.

Grid


y



y



y

L0
Refinement−−−−−−−→
Topologies

L1
Refinement−−−−−−−→
Topologies

L2



y



y



y

( childs of L0

L1

) ( parents of L1

L0

childs of L1

L2

) ( parents of L2

L1

)

(A.1)

In addition to the relative level representations, each Topology level may also carry a representation of
data and physical coordinates for a certain chart (not shown in (A.1)).
Topology groups may be of arbitrary index space. A Topology of index space 0 refers to vertices in the
hierarchy, a Topology of index space 1 refers to cells. They have the same meaning as the Point and
Connectivity Topologies and can be used in place of them to allow operations on a specific level only.

The various Topology objects may exist on different times, cross-references among Topology objects
from distinct Slices (but not different Bundles) are possible. A typical case is when e.g. data on the
coarsest level is only defined for T = 4.0 and T = 6.0, while the first refinement level is available for
T = 4.0, 5.0 and 6.0.
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A.1.3 Non-spatial data

Spherical Harmonic Coefficients

Within the framework of numerical relativity apparent horizons play a key role (see e.g. Max-Planck-News
[Ben99a, Ben99b]). They are a primary indicator of the location and extend of black holes. An algorithm
implemented by M. Alcubierre computes the apparent horizon by minimizing the expansion coefficients
of spherical harmonics. The resulting surfaces are then described by non-spatial data but instead as
a series of spherical harmonics corresponding to the multipole moments. The apparent horizon is an
evolving ray surface with time-dependent coefficients, which constitute the radial distances according to
(3.11). In general, the Alm are complex coefficients, but in practice just a subset is required to describe
the apparent horizon surface due to symmetry relationships.

Using the concept of a Coefficient Topology (3.2.3), the only data which needs to be stored e.g. in a
file is the Coefficient Grid with the respective Alm(t) data and a coordinate transformation object that
tells that the resulting field shall be the radial coordinate of the surface in a three-dimensional polar chart.
This information is sufficient to compute the surface of an apparent horizon with arbitrary user-defined
precision.

Grid

-"Ylm" (Topology of index depth -1)

-[DestinationChart]: i−1 ≡ {l,m} 7→ Alm

Multispectral Expansions

Embedding Diagrams as they are computed in a new method developed at the AEI by Bondarescu,
Alcubierre and Seidel [BAS02] are an extension of the apparent horizon finding algorithm. Similar to
finding the apparent horizon by minimizing the coefficients of a spherical harmonics expansion of the
surface, a set of coefficients can also be minimized for a flat space surface, such that the metric on top
of this 2D-surface in 3D flat space yields the same metric as the 2D surface of the apparent horizon in
3D curved space. However, just minimizing for the radial coefficients is not sufficient. In addition, one
needs also to introduce new coordinates {ϑ̄, ϕ̄} within the embedded surface. These new coordinates can
then be related to the original {ϑ̃, ϕ̃} surface coordinates along the surface via a multispectral expansion.
The coefficients for a certain coordinate are denoted by the same letter, grouped by the family of basis
functions:

ϑ̄(ϑ̃, ϕ̃) = B(0)ϑ̃+B(1)ϕ̃+
∑

i

B
(2)
i sin(iϑ̃) +

∑

i

B
(3)
i sin(iϕ̃) +

∑

i

B
(4)
i,j sin(iϕ̃) sin(jϑ̃)

ϕ̄(ϑ̃, ϕ̃) = C(0)ϑ̃+ C(1)ϕ̃+
∑

i

C
(2)
i sin(iϑ̃) +

∑

i

C
(3)
i sin(iϕ̃) +

∑

i

C
(4)
i,j sin(iϕ̃) sin(jϑ̃)

The embedding algorithm then also minimizes for the B and C coefficients. The radial component is to
be computed in the flatspace embedding coordinates {ϑ̄, ϕ̄}:

R̄(ϑ̄, ϕ̄) =
∑

l,m

AlmYlm

(

ϑ̃(ϑ̄, ϕ̄), ϕ̃(ϑ̄, ϕ̄)
)

All these coefficients, A, B, C are time-dependent; this dependency has been dropped in the above
expressions for clarity, but is of importance because the grid operations of coefficient evaluation and grid
interpolation are no longer commutative (in contrast to the simpler apparent horizon surfaces described
in the previous section A.1.3). Thus it is essential to make use of the concept of local and global charts
(ref. 3.2.3).

To formulate these data in the context of the fiber bundle data model, they can be put into coefficient
topologies, each of them corresponding to a specific (procedurally defined) set of basis functions. Hereby

C
(4)
i,j and B

(4)
i,j are two-dimensional coefficients, while the others are one-dimensional coefficients or just a

constant. Also higher dimensional sets of coefficients are thinkable in general, and it is obvious that the
formulation via a topological space makes sense for coefficients as well.
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Figure A.1: The apparent horizon of a numerical black hole simulation, shown at the same scale in
coordinate space (coordinates chosen for the numerical computation), surface coordinates (showing just
the radial expansion) and flat space (including also a coordinate transformation on the surface itself
before the radial expansion is shown).

Technically, the coefficient evaluation operation will just compute separate fields which are the sum
of the coordinate expressions. It is left to the functionality of a transformation object to combine these
separate fields to new coordinates. Fig. A.1 shows an example of an embedding surface in three different
coordinate systems according to the included transformation rules.

A.2 Summation of Spherical Harmonics

The summation of spherical harmonic functions from a set of coefficients

A =
∑

k

k∑

l=−k

AlkYlk(ϑ, ϕ) , (A.2)

is a frequent task. E.g., it was used to compute the surface of an apparent horizon as determined by an
expansion in spherical harmonics. Often, it it is done in the most straightforward way by directly casting
the mathematical expression into a numerical algorithm. This is a bad choice, once for performance
reasons and, more critical, for numerical stability. An algorithm by Deuflhard presented in [Deu76]
and [DH03] tackles both issues and provides a fast and numerically stable recipe for the summation of
coefficients of a spherical harmonic expansion series. In the original publication, the algorithm was shown
only for a limited range of ϑ, ϕ, i.e. the first quadrant. Here we show its extension to the full range on
a sphere and review its derivation. The two publications differ by their normalizations of the underlying
Legendre polynomials. [Deu76] uses

P l
k(x) =

(−1)l

2kk!

√

1− x2
dk+l

dxk+l
(x2 − 1)k ,

whereas [DH03] implements the other convention found in literature as well,

P̂ l
k(x) =

(−1)l

(k + l)! 2kk!

√

1− x2
dk+l

dxk+l
(x2 − 1)k ≡ 1

(k + l)!
P l

k(x) .

Here, we use the first normalization convention.
A critical source of numerical instabilities is the computation of differences. While addition is numer-

ically harmless, subtractions may be troublesome. For instance, the expression (10−10 + 1)− 1 will yield
exactly zero when the computation is performed with a precision of nine digits, because 10−10 + 1 will
be rounded to 1. However, reordering of the expression as 10−10 + (1− 1) will exactly yield 10−10, even
when computed with nine digits of precision. Alternating sums including a factor −1l like those of the
Legendre polynomials are very sensitive to such errors, but may be cured by reordering of the summation
algorithm. Similar cases like the term cosϑ− 1 lead to troubles as well and become numerically instable
for small ϑ where cosϑ → 1. By the means of trigonometric relationships we may substitute the cosine
by a more suitable expression, as will be demonstrated below.
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Here, the spherical harmonic functions are defined as

Y l
k(ϑ, ϕ) := P l

k(cosϑ) eilϕ (A.3)

whereby the associated Legendre polynomials Pl,k obey the recurrence relationship

(l − k)P l
k(µ) = µ(2l − 1)P l

k−1 − (l + k − 1)P l
k−2 (A.4)

with µ = cosϑ. The algorithm described in [Deu76] computes the real and imaginary part of a summation
A = C + iS over real-valued coefficients Alm. For complex coefficients the algorithm can be called again
with another parameter set for the imaginary coefficients. At first, the sum (A.2) can be written by
reordering the summations and performing the sum over k as the inner sum:

C =

L∑

l=0

K∑

k=l

Alk ℜYlk(ϑ, ϕ) (A.5)

S =
L∑

l=1

K∑

k=l

Alk ℑYlk(ϑ, ϕ) (A.6)

The resulting algorithm is numerically stable and much faster than a straightforward implementation of
(A.2), but is still simple, such that an implementation of the algorithm fits into a single page, as will
be demonstrated in A.2. In this section the derivation of the algorithm is continued at the place where
the original paper handled the first quadrant only. For a complete introduction, the reader is referred to
[Deu76].

Summation basics

When computing the sum

SN (x) =

N∑

k=0

AkTk(x)

of special functions Tk(x) given by a difference equations of the form

Tk − ak(x)Tk−1 − bk(x)Tk−2 = 0 bk 6= 0 k = 2, . . . , N ,

we can compute the sum forward (known as Forsythe’s algorithm), starting from k = 2 increasing to N :

S1 = A0T0 +A1T1

k = 2, 3, . . . , N
Tk = akTk−1 + bkTk−2

Sk = Sk−1 +AkTk

Alternatively we may employ Clenshaw’s algorithm to perform the sum backward, starting with k = N
decreasing to k = 1, introducing auxiliary variables U :

UN+1 = UN+2 = 0
k = N,N − 1, . . . , 1

Uk = ak+1Uk+1 + bk+2Uk+2 +Ak

SN = (A0 + b2U2)T0 + U1T1

The mathematical equivalence of both algorithms is e.g. shown in [Deu76]. Numerically, the second
version is faster because there obviously are less operations in the k-loop, saving N multiplications all
together. Moreover, numerical stability of the summation process is related to the stability of the related
recurrence scheme. For instance, for the Bessel functions Jk(x) the recurrence scheme ak(x) = 2(k−1)/x,
bk(x) = −1 is known to be stable backward but unstable forward, so Clenshaw’s algorithm is suitable
and numerically preferable here.
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Summation of spherical harmonics

Introducing auxiliary variables U, V , one can derive the following recursion scheme for the spherical
harmonics [Deu76]:

VL+1 = 0
VL+2 = 0
l = L,L− 1, . . . , 0

U l
K+1 = 0

U l
K+2 = 0

k = K,K − 1, . . . , l + 1
U l

k = Al
k + 2k+1

k−l+1U
l
k+1 cosϑ− k+l+1

k−l+2U
l
k+1+2

if (l > 0)
Vl = U l

l − (2l + 1) sinϑ (2 cosϕVl+1 + (2l + 3) sinϑVl+2)

C = U0
0 − sinϑ [cosϕV1 + 3 sinϑV2]

S = − sinϑ sinϕV̄1

This algorithm is unstable for ϕ→ 0 or ϑ→ 0.

Stabilization of the inner sum (loop over k)

The summation variables of the k loop are denoted by U . The summation starts with k = K, thus

UK+1 = UK+2 = 0 . (A.7)

The recursion formula for k = K,K − 1, . . . , l is known as

U l
k = Al

k +
2k + 1

k − l + 1
U l

k+1 cosϑ− k + l + 1

k − l + 2
U l

k+2 . (A.8)

We make an ansatz to stabilize the recursion of U :

U l
k = ql

kŪ
l
k (A.9)

Ū l
k = rl

kŪ
l
k+1 + dU l

k (A.10)

Here, Ū l
k and dU l

k shall be used as new computational variables in the loop. The coefficients ql
k and rl

k

have been introducted to gain some freedom in scaling the loop variables. We now show how to determine
these coefficients. Reformulation of this ansatz yields

U l
k = ql

k

(
rl
kŪ

l
k+1 + dU l

k

)
(A.11)

Ū l
k+1 =

1

rl
k

(
Ū l

k − dU l
k

)
(A.12)

We now insert (A.11) and (A.9) into the recursion formula (A.8):

ql
k

(
rl
kŪ

l
k+1 + dU l

k

)

︸ ︷︷ ︸

U l
k

= Al
k +

2k + 1

k − l + 1
ql
k+1Ū

l
k+1

︸ ︷︷ ︸

U l
k+1

cosϑ− k + l + 1

k − l + 2
ql
k+2Ū

l
k+2

︸ ︷︷ ︸

U l
k+2

(A.13)

By means of (A.12) we may express Ū l
k+2 by terms of k + 1:

Ū l
k+2 =

1

rl
k+1

(
Ū l

k+1 − dU l
k+1

)
. (A.14)

Inserting (A.14) into (A.13) results in

ql
k

(
rl
kŪ

l
k+1 + dU l

k

)
=

Al
k +

2k + 1

k − l + 1
ql
k+1Ū

l
k+1 cosϑ− k + l + 1

k − l + 2
ql
k+2

1

rl
k+1

(
Ū l

k+1 − dU l
k+1

)

︸ ︷︷ ︸

Ū l
k+2

, (A.15)
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thus revealing an expression of dU l
k as a function of k + 1 terms:

ql
kdU

l
k = Al

k +
2k + 1

k − l + 1
ql
k+1Ū

l
k+1 cosϑ− ql

kr
l
kŪ

l
k+1 −

k + l + 1

k − l + 2

ql
k+2

rl
k+1

(
Ū l

k+1 − dU l
k+1

)

= Al
k +

k + l + 1

k − l + 2

ql
k+2

rl
k+1

dU l
k+1 + Ū l

k+1

[

2k + 1

k − l + 1
ql
k+1 cosϑ− ql

kr
l
k −

k + l + 1

k − l + 2

ql
k+2

rl
k+1

]

︸ ︷︷ ︸

=:F (cos ϑ)

(A.16)

Since the dependency of cosϑ on ϑ is low for small angles ϑ→ 0, the term F (cosϑ) shall not contribute
to the recursion at ϑ = 0 (stability condition), i.e.:

F (cosϑ)|ϑ=0 = 0 (A.17)

Therefore we require:

F (cos(ϑ))|ϑ=0 =
2k + 1

k − l + 1
ql
k+1 · 1

︸︷︷︸

cos 0

−ql
kr

l
k −

k + l + 1

k − l + 2

ql
k+2

rl
k+1

≡ 0 (A.18)

This condition can be achieved by setting

ql
k := (k − l) (A.19)

rl
k := 1 (A.20)

Analogously, for cosϑ < 0 we need to stabilize the case ϑ→ π:

F (cos(ϑ))|ϑ=π =
2k + 1

k − l + 1
ql
k+1 · −1

︸︷︷︸

cos π

−ql
kr

l
k −

k + l + 1

k − l + 2

ql
k+2

rl
k+1

≡ 0 (A.21)

which can be achieved by

ql
k := (k − l) (A.22)

rl
k := −1 (A.23)

Thus we set

rl
k ≡ rϑ :=

{

cosϑ ≥ 0 +1

cosϑ < 0 −1
(A.24)

and get for F :

F (cos(ϑ)) =
2k + 1

k − l + 1
(k + 1− l)
︸ ︷︷ ︸

ql
k+1

cosϑ− (k − l)
︸ ︷︷ ︸

ql
k

rϑ −
k + l + 1

k − l + 2

ql
k+2

︷ ︸︸ ︷

k + 2− l
rϑ

=(2k + 1) cosϑ− (k − l)rϑ −
k + l + 1

rϑ

(A.25)

By recognizing that rϑ ≡ 1
rϑ

due to A.24 we may write A.25 as

F (cos(ϑ)) = (2k + 1) cosϑ− (k − l + k + l + 1)
︸ ︷︷ ︸

2k+1

rϑ = (2k + 1) (cosϑ− rϑ) (A.26)

As the expression cosϑ− 1 is numerically instable for cosϑ → 1, we employ trigonometric relationships
and use the replacement expression −2 sin2 ϑ

2 , which is numerically well behaved; analogously at cosϑ ≤ 0.
We define:

cϑ := cosϑ− rϑ =

{

cosϑ ≥ 0 cosϑ− 1 ≡ −2 sin2 ϑ
2

cosϑ < 0 cosϑ+ 1 ≡ 2 cos2 ϑ
2

(A.27)

such that
F (cos(ϑ)) = (2k + 1)cϑ (A.28)
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is a numerically stable expression for all ϑ. Now we revisit the recursion formula (A.16) by inserting the
results (A.19) and (A.22) as well as (A.28) and get:

(k − l)dU l
k = Al

k +
k + l + 1

k − l + 2

k + 2− l
rϑ

dU l
k+1 + Ū l

k+1(2k + 1)cϑ (A.29)

Thus the recursion takes the form:

(k − l)dU l
k = Al

k + (k + l + 1)rϑdU
l
k+1 + Ū l

k+1(2k + 1)cϑ (A.30)

together with the other recursion term (A.10):

Ū l
k = rϑŪ

l
k+1 + dU l

k (A.31)

Terminating the Recursion over k

The case k = l requires special treatment when looping over k. According to (A.8) we get for U l
l :

U l
l = Al

l + (2l + 1)U l
l+1 cosϑ− 2l + 1

2
U l

l+2 (A.32)

where

U l
l+2

(A.9)
= ql

l+2
︸︷︷︸

(l+2)−l=2

Ū l
l+2

(A.12)
= 2

1

rϑ

(
Ū l

l+1 − dU l
l+1

)
(A.33)

U l
l+1

(A.9)
= ql

l+1
︸︷︷︸

1

Ū l
l+1 (A.34)

and therefore we may directly express U l
l as

U l
l = Al

l + (2l + 1)Ū l
l+1 cosϑ− 2l + 1

2
2

1

rϑ

(
Ū l

l+1 − dU l
l+1

)

= Al
l + (2l + 1)Ū l

l+1 (cosϑ− rϑ)
︸ ︷︷ ︸

cϑ

+rϑ(2l + 1)dU l
l+1

(A.35)

Stabilization of the Summation over l

We start with considering eq. (3.10) in [Deu76]:

VL+1 = VL+2 = 0 (A.36)

Vl = U l
l − (2l + 1) sinϑ [2Vl+1 cosϕ+ (2l + 3)Vl+2 sinϑ] (A.37)

We make an ansatz for new loop variables V̄ and dV :

Vl = qlV̄l (A.38)

V̄l = rlV̄l+1 + dVl (A.39)

and get

Vl = ql
(
rlV̄l+1 + dVl

)

︸ ︷︷ ︸

V̄l

(A.40)

Vl+1 = ql+1V̄l+1 (A.41)

Vl+2 = ql+2
1

rl+1

(
V̄l+1 − dVl+1

)

︸ ︷︷ ︸

V̄l+2

(A.42)

Insertion into (A.37) yields

ql
(
rlV̄l+1 + dVl

)
= U l

l − (2l + 1) sinϑ

(

2ql+1V̄l+1 cosϕ+ (2l + 3)
ql+2

rl+1

(
V̄l+1 − dVl+1

)
sinϑ

)

(A.43)
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We may now express dVl in terms of l + 1:

qldVl =U l
l + (2l + 1)(2l + 3)

ql+2

rl+1
dVl+1 sin2 ϑ−

−V̄l+1

[

qlrl + 2(2l + 1)ql+1 sinϑ cosϕ+ (2l + 3)(2l + 1)
ql+2

rl+1
sin2 ϑ

]

︸ ︷︷ ︸

=:G(ϕ)

(A.44)

We want G(ϕ) to vanish when the dependency of cosϕ on ϕ is small. The stability condition thus reads:

cosϕ ≥ 0 : ϕ→ 0, cosϕ→ 1 G(ϕ)→ 0 (A.45)

cosϕ < 0 : ϕ→ π, cosϕ→ −1 G(ϕ)→ 0 (A.46)

Condition (A.45), i.e. G(0) = 0, is achieved by

rl(cosϕ ≥ 0) = −(2l + 1) sinϑ (A.47)

ql = 1 (A.48)

and condition (A.46), i.e. G(π) = 0, is achieved by

rl(cosϕ < 0) = +(2l + 1) sinϑ (A.49)

ql = 1 (A.50)

We may thus set
rl = −rϕ(2l + 1) sinϑ (A.51)

with

rϕ :=

{

cosϕ ≥ 0 +1

cosϕ < 0 −1
(A.52)

and get, considering numerical instabilities of the trigonometric functions as in (A.27),

G(ϕ) = (2l + 1)2 sinϑ (cosϕ− rϕ)
︸ ︷︷ ︸

cϕ:=

8><>:cosϕ ≥ 0 : −2 sin2 ϕ
2

cosϕ < 0 : +2 cos2 ϕ
2

. (A.53)

Inserting this result into (A.44) yields

dVl =U l
l +

(2l + 1)(2l + 3)

−rϕ(2l + 3) sinϑ
sin2 ϑ

︸ ︷︷ ︸

−(2l+1) sin ϑrϕ

dVl+1 − V̄l+12(2l + 1)2 sinϑcϕ

=U l
l − (2l + 1) sinϑ

(
rϕdVl+1 + 2V̄l+1cϕ

)

(A.54)

This expression together with (A.39) defines the recursion:

V̄l = −rϕ(2l + 1)V̄l+1 sinϑ+ dVl (A.55)

Terminating the Recursion over l

We know from [Deu76]:

C = U0
0 − sinϑ (V1 cosϕ+ 3V2 sinϑ) (A.56)

S = − sinϑ sinϕV1 (A.57)

We may write V2 in the computational variables:

V2 = V̄2
(A.39)

=
1

r1

(
V̄1 − dV1

) (A.51)
=

1

−3rϕ sinϑ

(
V̄1 − dV1

)
= −1

3
rϕ

1

sinϑ

(
V̄1 − dV1

)
(A.58)

which lets us express C and S via V̄1 und dV1. Neither V̄0 nor dV0 need to be computed. We finally get:

C = U0
0 − sinϑ

[
V1 cosϕ− rϕ

(
V̄1 − dV1

)]
= U0

0 − sinϑ
[
cϕV̄1 + rϕdV1

]
(A.59)

S = − sinϑ sinϕV̄1 (A.60)
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Normalization factors

The definition (A.3) used here for deriving the summation algorithm does not include the normalization
factors as often found in physics

Ỹ l
k(ϑ, ϕ) :=

√

2l + 1

4π

(l − k)!
(l + k)!

P l
k(cosϑ) eilϕ ≡

√

2l + 1

4π

(l − k)!
(l + k)!

Y l
k(ϑ, ϕ) . (A.61)

To yield the same results, the normalization factors can be added to the coefficients or into the respective
location of the algorithm where the coefficients are evaluated.

Algorithm

Given a set of real-valued coefficients Al
k with l ≤ L, the real part C (A.5) and the imaginary part S

(A.6) of the spherical harmonic expansion up to the multipole moment of order L are computed via the
following algorithm:

rϑ
(A.24)
:=

{

cosϑ ≥ 0 +1

cosϑ < 0 −1

cϑ
(A.27)
:=

{

cosϑ ≥ 0 −2 sin2 ϑ
2

cosϑ < 0 +2 cos2 ϑ
2

rϕ
(A.52)
:=

{

cosϕ ≥ 0 +1

cosϕ < 0 −1

cϕ
(A.53)
:=

{

cosϕ ≥ 0 : −2 sin2 ϕ
2

cosϕ < 0 : +2 cos2 ϕ
2

dVL+1 = 0
V̄L+1 = 0
l = L,L− 1, . . . , 0

dU l
K+1 = 0

Ū l
K+1 = 0

k = K,K − 1, . . . , l + 1

dU l
k

(A.30)
= 1

k−l

[
Al

k + (k + l + 1)rϑdU
l
k+1 + (2k + 1)Ū l

k+1cϑ
]

Ū l
k

(A.31)
= rϑŪ

l
k+1 + dU l

k

U l
l

(A.35)
= Al

l + (2l + 1)
(
Ū l

l+1cϑ + rϑdU
l
l+1

)

if (l > 0)

dVl
(A.54)

= U l
l − (2l + 1) sinϑ

(
rϕdVl+1 + 2V̄l+1cϕ

)

V̄l
(A.55)

= −rϕ(2l + 1)V̄l+1 sinϑ+ dVl

C
(A.59)

= U0
0 − sinϑ

[
cϕV̄1 + rϕdV1

]

S
(A.60)

= − sinϑ sinϕV̄1

For complex coefficients Al
k = ℜAl

k + iℑAl
k the iteration variables dV, V, dU, U and their corresponding

expressions need to be duplicated. Alternatively, the sums involving ℜAl
k and ℑAl

k can be computed
separately and combined as

∑

l

∑

k

Al
kYlk = C(ℜAl

k)− S(ℑAl
k) + i

(
C(ℑAl

k) + S(ℜAl
k)

)

whereby the pairs C(ℜAl
k), S(ℜAl

k) and C(ℑAl
k), S(ℑAl

k) are computed directly by the described algo-
rithm on real-valued data arrays.
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Example Implementation in C++

Here, a function

inline double sqr(double x) { return x*x; }

computes the square of its argument. The spherical harmonic coefficients Al
k are available from a real-

valued object A via
Al

k = A(l,k)

The angular input parameters ϑ, ϕ may point to an arbitrary location on the sphere, i.e. ϑ = [0, π] and
ϕ = [0, 2π].

double r_theta, c_theta, sin_theta = sin(theta);

if (theta > M_PI_2) // cos(theta)<0

{

r_theta = -1;

c_theta = 2*sqr(cos(0.5*theta));

}

else

{

r_theta = +1;

c_theta = -2*sqr(sin(0.5*theta));

}

double r_phi, c_phi;

if (phi > M_PI_2 && phi < 1.5*M_PI_2) // cos(phi)<0

{

r_phi = -1;

c_phi = 2*sqr(cos(0.5*phi));

}

else

{

r_phi = +1;

c_phi = -2*sqr(sin(0.5*phi));

}

double dV = 0, V = 0,

dU, U;

for(int l = L; l>=0; l--)

{

dU = 0;

U = 0;

for(int k=K; k>l; k--)

{

dU = ( A(l,k) + (k+l+1)*r_theta*dU +

(2*k+1)*U*c_theta ) / (k-l);

U = r_theta*U + dU;

}

U = A(l,l) + (2*l+1) * (U*c_theta + r_theta*dU);

if (l>0)

{

dV = U - (2*l+1)*sin_theta*(r_phi*dV + 2*V*c_phi);

V = -r_phi * (2*l+1)*V*sin_theta + dV;

}

}

double C = U - sin_theta*( c_phi * V + r_phi * dV ),

S = - sin_theta*sin(phi)*V;

The result is available in the variables C and S.
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A.3 Application to Non-relativistic Datasets

Tensor fields do not only occur in general relativity, but also in other scientific domains. While the
visualization methods for rendering tensor fields have been discussed for their application on general
relativistic tensor fields, some of these methods are also applicable for mathematical equivalent data sets
from other sources.

Application to MRI Data

Diffusion weighted magnetic resonance imaging (DW MRI) is a technique that measures the diffusion
properties of water molecules in tissues[ZMB+03].With the availability of such measured tensor field
data for medical purposes, the interest of visualizing such data has grown rapidly in the last years
[ZDD+01, ZDK+01, TRW+02, HTR+02, TWD+01]. Anisotropic diffusion is described by the equation

∂C

∂t
= ~∇ · (D~∇C) or C,t = (DijC,i ),j

whereby the scalar function C : M × R → R is the time-dependent concentration of water molecules
and D : T ∗(M) → T (M) is a symmetric, positive definite contravariant tensor field of rank two. The
inspection of diffusion tensor data is relevant for the segmentation and classification of MRI data to detect
the white matter tracts that form the “wiring” of the human brain [KWH00]. Inspection of the measured
matrix elements by themselves is not reasonable, because they are not invariant under rotations, hence
depending on the scan measurement’s orientation. Invariant visualization methods are thus important
here. An exemplary dataset was provided generously by Gordon Kindlmann and Andrew L. Alexander.
It is of certain interest for visualization purposes because it provides a large variety of tensor shapes,
while still containing clear structures without overwhelming symmetries (as is the case with the inspected
relativistic data sets). We will thus compare various methods upon this data set, using exactly the same
view parameters.

As a first approach, we may employ metric ellipsoids (p.128) with colors indicating the trace of the
tensor. We find, fig. A.2, that this representation clearly depicts the properties of the tensors at each
point, but we need to enlarge the image such that each ellipsoid becomes visible on its own. When
inspecting the entire image as an overview, hardly anything can be seen at all because the structures
of the ellipsoids fall below the resolution and we could equivalently use volume rendering of the trace
as a scalar field. But even when zoomed onto an interesting region, the ellipsoids are hard to interpret
because we only see their projected shape and reconstructing their three-dimensional orientation from a
two-dimensional image is more a matter of imagination than visualization.

Figure A.2: Metric Ellipsoids applied to a slice of the Human Brain.

Employing the method of Tensor Glow (p.131) in fig. A.3 reduces the visual clutter. In the variant
used here, the projected glow icon is normalized, but its transparency is set proportional to the trace
of the tensor field. These settings enhance regions of high trace, i.e. the regions where water may flow
rapidly. Such areas are depicted clearly, in an overview as well as in an enlargement. We also get an
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glimpse of the orientation of the flow, but it is not too prominent as the anisotropy is rather small.
The tensor glow method is thus applicable and helps to enhance certain features, but is not optimal for
depicting anisotropy.

Figure A.3: Tensor Glow technique applied to a slice of the Human Brain.

Tensor Cones, p.133, are primarily inspired by the relativistic context. However, it may be applied to
the MRI data set rather successful. In fig. A.4 we find global structures information more clearly than
using ”‘metric ellipsoids”’ or ”‘Tensor Glow”’. This is due to the larger sensitivity of the appearance of
tensor cones to variations of the tensor field. As a consequence, we get a good overview of all structures
contained in the data set. However, the interpretation is difficult because we have the vector field probe
as an arbitrary input parameter. The structure of this user-chosen vector field is clearly recognizable, so
we can study the tensor field properties by visual inspection, but it still requires some mental effort.

Figure A.4: Tensor Cones applied to a slice of the Human Brain.

Haber glyphs, p.135, have some history in computation fluid dynamics. They are very sensitive to
anisotropy and are thus able to enhance global structures in an overview similar to the tensor cones, but
without dependence on an user-chosen input vector field. The enlarged view also gives an hint of some
large structures that incorporate a flow. However, to really recognize the details, we require an extreme
enlargement such that all glyphs become resolved. As a drawback of Haber glyphs, see fig. A.5, they
suffer from anisotropy artifacts, as the glyphs are randomly oriented in isotropic areas.

In contrast to Tensor Cones and Haber Glyphs, the technique of Tensor Schlieren, p.138, uses trans-
parency as a fundamental part of the visualization algorithm. Thus, it is more suitable for large-scale



A.3. APPLICATION TO NON-RELATIVISTIC DATASETS 191

Figure A.5: Haber glyphs applied to a slice of the Human Brain.

overviews. However, transparency is not an invariant quantity here, but depends on the view direction,
as the purpose of Tensor Schlieren is to enhance regions where the maximal eigenvector is perpendicular
to the view direction. Tensor Schlieren are thus more suitable for an interactive environment than for
static, two-dimensional images. However, even for static images it yields the best overview of the brain
visualizations discussed so far: it reduces visual clutter by rendering large regions transparent (those
where the maximal eigenvector is parallel to the view direction), while strongly displaying the orienta-
tion of the minor eigenvector in other regions. We thus get a good structural overview plus directional
information in each area.

Figure A.6: Tensor Schlieren applied to a slice of the Human Brain.

While Tensor Schlieren produces view-dependent images encoding the orientation of the tensor field’s
eigenvectors by intensity, the technique of Tensor Splats p.140 uses colors for doing so and enhances
the differences among the median and minor eigenvector by employing an additional one-dimensional
high-frequency texturing. Transparency is used to encode the isotropy, i.e. isotropic regions are visually
removed from the image. The result fig. A.7 is a strong enhancement for all anisotropic features with
clear depiction of difference among minor and median eigenvectors as well. The Tensor Splat technique
displays various features redundantly in different manners. In this respect, it is overdetermined and
theoretically were able to display even more than the six quantities of a metric tensor field – in contrast
to most former methods, that are designed to encode exactly six quantities or even less. However, this
approach is not an overkill because for a certain view some glyph might not be able to display all of its
quantities. For instance, although an ellipsoid encodes six parameters, we can only see three of them for a
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certain view. The redundant display of parameters in the Tensor Splat technique avoids these problems.
E.g. green indicates a linear region independent from its orientation and is thus clearly distinguishable
from a red disk seen from aside. Tensor Splats thus appear to provide the best view of the discussed
methods and due to their power also are appropriate for a full three-dimensional volume visualization.
Their application to the human brain will thus be discussed in more detail.

Figure A.7: Tensor Splats applied to a slice of the Human Brain.

Detailed Discussion of Tensor Splats Fig. A.8 demonstrates the tensor splats technique applied to
a two-dimensional slice of a diffusion tensor scan of the human brain with a resolution of 148× 190× 160
points. While the coloring provides a rough overview to distinguish between regions with highly linear
(water diffusion happens mainly in one direction) and highly planar diffusion (water diffusion may occur
in two directions), the finer detailed texture also shows the direction of the dominant diffusion. Interactive
rotation of a 3D image on a compute screen or stereo viewing in a virtual reality environment provides
a better perception of the actual orientation of planar structures. Alternatively, we can also inspect
the inverse tensor field, right image in Fig. A.8, to map planar splats to linear ones and vice versa. The
comparison of both views clearly displays the orientation of the planar diffusion. The high-contrast colors

Figure A.8: A slice through the brain (left image), displaying diffusion “obstacles”, and the inverse
tensor (right image), displaying the possible diffusion velocities. Linear regions are easily detectable,
planar regions appear smoother.

were chosen to emphasize the transition between linear and planar regions. However, the colors are just
used as enhancement of information that is already contained in the texture. Using a black-white color
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Figure A.9: Tensor Splats also work well in just gray-scale images. which is of interested when some
image can only be printed in black and white.

transition as in fig. A.9 is sufficient as well, provided that high image resolution is possible to reveal
the fine grass-like structures The Tensor Splats method extends easily to three-dimensional data sets,
although it might require some fine-tuning of the visualization parameters to hide more of the isotropic
regions than needed for two-dimensional slices. The full three-dimensional view of the brain data is shown
in fig.A.10, whereas the visual impression is of course increased by high resolution images and direct user
interaction with the three-dimensional geometry on a computer screen or VR projection device. The
directional information as provided by the tensor splats technique also easily coexists with standard
volume rendering. So beside color coding some scalar or vector field on the tensor splats themselves, a
smooth volume rendering may be used in addition to display other scalar quantities. Useful examples are
the trace of the tensor field, or the cl shape factor field, as shown in Fig. A.11 to display the coincidence
of highly linear regions and the directional information provided by the tensor splats.

Figure A.10: Tensor Splats are capable to visualize an entire 3D volume of the Brain.

Figure A.11: While volume rendering of the anisotropy shape factor cl (right) gives a notion where some
highly linear regions occur, the Tensor Splats (left) also gives a notion in which direction such a linear
diffusion takes place. The center image shows an overlay of volume rendering with Tensor Splats.
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Eigenvector Streamlines The eigenvectors of a tensors are an essential and easily understandable
property. Treating the eigenvectors of a tensor field as a vector field is not really correct because the sign
of the eigenvectors is undetermined by the eigenvalue equation. Moreover, eigenvectors become undefined
in isotropic regions. Still, we may try to employ vector field visualization methods like the illuminated
stream line technique [ZSH96] upon eigenvector fields. To reduce or even avoid anisotropy artifacts, the
transparency of the resulting stream lines is set proportional to the sphericity shape factor cs. Then lines
in the cs = 1 regions of undefined maximal eigenvector become invisible, although a streamline of the
maximal eigenvector field continues there. The seed points for the streamline integration, which determine
the density and number of stream lines, are set dominantly in regions where the linearity factor cl is close
to one. Consequently, stream lines start in highly linear regions, may traverse through planar regions but
are less dense there and vanish in isotropic parts of the volume data set. This approach is perfectly suitable

Figure A.12: Streamlines along the maximum eigenvector in linear regions.

for full three-dimensional visualization of a data set. Due to the three-dimensional nature of streamlines,
it is not even applicable to two-dimensional slices. fig. A.12 displays a three-dimensional rendering with
the same view parameters as used in the glyph comparison techniques before, fig. A.13 displays the
full three-dimensional volume from different view positions. The ISL/transparency/line density based
eigenvector streamline technique is able to display practically all of the tensor field features, including
isotropic and linear regions in a clear way. However, it is not suitable for point-wise detailed inspection
of a data set. Also, planar regions are not visualized correctly, since eigenvector stream lines visually
suggest only one direction there.

Figure A.13: Front, side and top view of streamlines along the maximum eigenvector in linear regions of
the human brain data set.
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Application to Distortion Vector Fields

If the underlying manifold is a vector space, then we may employ a vector field to compute an “elastic
distortion” by remapping each point onto another point as given by the vector field:

v : R
n → R

n (A.62)

p 7→ p+ v(p) (A.63)

A set of equidistant points will no longer remain equidistant under this mapping. If we assign the new
point location with the same coordinates as the original points, we need to replace the euclidean metric
with a non-euclidean one. This non-euclidean metric is directly related to the underlying distortion vector
field. Visualization of this distortion tensor field is an alternative to displaying the vector field or the
distorted point locations.

Derivation of the distortion tensor field Let x0, x1 be two points with unit distance, i.e. η(x1 −
x0, x1 − x0) = 1 with η the euclidean metric. These points are mapped to x0 + v(x0) and x1 + v(x1).
The distance between these mapped points is then

l := (x1 + v(x1))− (x0 + v(x0)) ≡ (x1 − x0) + (v(x1)− v(x0)) =: ∆x+ ∆v .

We now are seeking a metric that fulfills g(l, l) = 1. It is the metric tensor field that is induced by the
distortion vector field v. By insertion we find:

g(l, l) = g(∆x+ ∆v,∆x+ ∆v) = g(∆x,∆x) + g(∆x,∆v) + g(∆v,∆x) + g(∆v,∆v)

In a coordinate system, the distorted distance l is given component-wise:

li = ∆xi + ∆vi

To derive a metric tensor field in the tangential space, we are interested in the infinitesimal change
∆x→ 0:

li,j ≡
dli

dxj
= lim

∆xj=0

li

∆xj
= lim

∆xj=0

∆xi

∆xj
+

∆vi

∆xj
=
dxi

dxj
+
dvi

dxj

and thus may write the infinitesimal distortion vector as

l = li,j dx
j∂i = (δi

j + vi,j )dxj∂i

Insertion yields

gij = δn
i ηmnδ

m
j + δn

i ηmnv
m,j +vn

i ηmnδ
m,j +vn

i ηmnv
m,j = δij + vi,j +vj ,i +

∑

k

vk,i v
k,j (A.64)

This equation describes the induced “distortion tensor” of a vector field. It is sensitive to variations
in the underlying vector field and becomes the Euclidean metric for a constant vector field. Based on
this relationship, we may now use tensor field visualization methods to inspect arbitrary vector fields.
The tensor splats visualization method is appropriate because it maps isotropic regions corresponding to
unstretched grid regions to transparency. The visual appearance and interpretation is discussed at the
following figures that have been created from a data set provided generously by Alexander Maye from
ZIB. It describes the deviations of a certain individual bee brain from a standard bee brain.
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Figure A.14: Mapping of a uniform grid by a vector field: Left image displays the resulting non-uniform
grid, the right image includes an overlay by Tensor Splats. Tensor Splats are highly sensitive to anisotropy
and display even small deformations. Isotropic regions correspond to areas where the grid is constantly
shifted and are displayed transparently. Note that the tensor field display reveals full three-dimensional
information of the grid distortion, whereas the grid view only provides a two-dimensional slice, so some
tensor splats are visible also in regions with apparently no grid distortion.

Figure A.15: Detail of the distortion tensor field. While we can clearly see the connection among grid
compression and tensor field, we also find some visual ambiguities in the shape of the tensor splats within
the left image: The shape of the green splats in the upper left area is just similar to the shape of the red
splats in toward the lower right. However, grid distortion apparently only occurs in the domain of the red
splats. Due to the color coding we know that the green splats indicate a linear region. Adding the tensor
texturing – right image – also reveals the direction of the linearity: it is perpendicular to the projected
major axis and thus shows that the linearity actually indicates grid stretching mostly perpendicular to
the view plane. This interpretation is confirmed by a 3D zoom onto the region of interest as in fig. A.16.
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Figure A.16: 3D Zoom onto the region of high linearity in fig. A.15, revealing strong grid stretching
perpendicular to the selected grid plane.

Figure A.17: Overview of the complete data set of a distorted grid and the corresponding induced metric
tensor field as visualized by tensor splats.
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Figure A.18: Influence of the tensor splat texture frequency: upper left no texture, upper right one
period, lower image using two periods per splat. Texturing of tensor splats helps to increase the visual
perception of linearity as compared to planar regions, but also requires higher image resolution.
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[SWH04] D. Stalling, M. Westerhoff, and H.-C. Hege, Amira - an object oriented system for visual
data analysis, Visualization Handbook (Christopher R. Johnson and Charles D. Hansen,
eds.), Academic Press, to appear 2004, http://www.amiravis.com/.
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Appendix D

Zusammenfassung

Mit analytischen Methoden konnte der allgemeine Fall des Zweikörperproblems im Rahmen der allge-
meinen Relativitätstheorie bislang nicht behandelt werden. Nur numerische Methoden sind aussicht-
sreich, astrophysikalisch realistische Kollisionsprozesse von Schwarzen Löchern, Neutronensternen und
ähnlichen Prozessen mit relativistischen Gravitationsfeldern beschreiben zu können. Die Ergebnisse derar-
tiger Simulationsrechnungen werden zur Datenanalyse neuartiger Gravitationswellendetektoren benötigt.
Zur Begutachtung der bei derartigen Simulationen anfallenden Datensätze werden geeignete Visual-
isierungsverfahren benötigt.

Die vorliegende Arbeit stellt zum einen ein Rahmenmodell zur Behandlung unterschiedlicher Daten-
typen vor, die bei numerischen Simulationsprozessen allgemein auftreten können. Die dabei entwickelten
Strukturen wurden aufgrund der Anforderungen aus der allgemeinen Relativitätstheorie entwickelt, ihre
mögliche Anwendbarkeit geht jedoch weit darüber hinaus. Ein mögliches Einsatzgebiet ist der standar-
disierte Datenaustausch zwischen unabhängigen Computeranwendungen, beispielsweise als allgemeines
Dateiformat für wissenschaftliche Daten oder als Kommunikationsprotokoll im Netzwerkverkehr.

Zum anderen werden in der Arbeit wissenschaftliche Visualisierungsverfahren für Tensorfelder zweiter
Ordnung verglichen und neu entwickelt. Derartige Daten stellen die Basisinformation numerisch bestimm-
ter Raumzeiten dar, treten aber auch in anderen Wissenschaftsgebieten wie z.B. Strömungsmechanik
und in der Medizintechnik auf. Während für Skalar- und Vektorfelder bereits viele ausgereifte Verfahren
existieren, sind Verfahren zur Visualisierung von Tensorfeldern eher selten zu finden. Im Gegensatz
zu Vektorfeldern sind hier (mindestens) doppelt so viele Informationen pro Raumpunkt vorhanden, die
visuell umgesetzt werden müssen.

Obwohl es nicht unbedingt zweckmässig ist, nach einem “allgemein besten” Darstellungsverfahren
zu suchen, da sich die möglichen Bedeutungen und die sich daraus ergebenden Anforderungen an die
Darstellung eines Tensorfeldes stark unterscheiden können, erscheint die neu entwickelte Methode der
“Tensor Splats” für weite Einsatzgebiete geeignet. Mithilfe einfacher Mittel können qualitativ hochwer-
tige Visualisierungen mit hoher Aussagekraft in Echtzeit erzielt werden, die eine unmittelbare visuelle
Interpretation des zugrundeliegenden sechsdimensionalen Datensatzes erlauben. Während ein geübter
Wissenschaftler quantitative Informationen abzulesen imstande ist, kann auch der ungeübte Betrachter
zumindest die relevanten Strukturen mit einem Blick erkennen.
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