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Figure 1: Geodesics in a Kerr metric.

Abstract:

Traditionally, tools to visualize geodesics in curved spacetimes of general rel-
ativity have been specialized solutions, either tailored to a certain spacetime
or limited to certain kinds of numerical data. Utilizing a Fiber Bundle data
model and the Vish visualization environment, this thesis aims to solve this
problem by developing an approach that is independent of the underlying
numerical data. My approach allows the combination of several visualization
modules, and opens the possibility of applying the computation and visu-
alization of integral lines more readily to other scientific domains. These
domains include computational fluid dynamics and medical imaging.



Contents

1 Introduction 6

2 Theoretical Background 10
2.1 Differential Geometry . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Manifolds and Charts . . . . . . . . . . . . . . . . . . . 10
2.1.2 Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Tangential Vector . . . . . . . . . . . . . . . . . . . . . 12

Transformation . . . . . . . . . . . . . . . . . . . . . . 13
2.1.4 Covector . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.5 Tensor Field . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.6 Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.7 Geodesic Equation and Christoffel Symbols . . . . . . . 16

Geodesic Equation . . . . . . . . . . . . . . . . . . . . 16
Christoffel Symbols . . . . . . . . . . . . . . . . . . . . 19

2.1.8 Geodesic Deviation and Riemann Tensor . . . . . . . . 20
2.1.9 Ricci Tensor and Scalar . . . . . . . . . . . . . . . . . 21

2.2 General Relativity . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.1 Einstein Field Equation . . . . . . . . . . . . . . . . . 22
2.2.2 Schwarzschild Metric . . . . . . . . . . . . . . . . . . . 23
2.2.3 Kerr Metric . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Fluid Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4 Medical Imaging . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Implementation Concepts 29
3.1 Type Traits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 STL Encapsulation . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Reference Pointers . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Modeling of Scientific Data 36
4.1 Fiber Bundle Data Model . . . . . . . . . . . . . . . . . . . . 37
4.2 The Hierarchy Levels . . . . . . . . . . . . . . . . . . . . . . . 38

3



CONTENTS 4

4.2.1 Fiber Bundle . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.2 Fiber Slice . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.3 Fiber Grid . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.4 Fiber Topology . . . . . . . . . . . . . . . . . . . . . . 41
4.2.5 Fiber Representation . . . . . . . . . . . . . . . . . . . 42
4.2.6 Fiber Field . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Simplified Access via Selectors . . . . . . . . . . . . . . . . . . 46
4.4 Data Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4.1 Uniform, procedural . . . . . . . . . . . . . . . . . . . 48
4.4.2 Multiblock, Curvilinear . . . . . . . . . . . . . . . . . . 49
4.4.3 Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Vish - The Vis(h)ualization Environment 52
5.1 Development Quick Start . . . . . . . . . . . . . . . . . . . . . 53

5.1.1 Availability and Installation . . . . . . . . . . . . . . . 53
5.1.2 Source Code Organization and Naming Conventions . . 54
5.1.3 Make Files and Compilation . . . . . . . . . . . . . . . 56

5.2 Scene Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.1 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.2 Data Transport and Access . . . . . . . . . . . . . . . 62

Creating new Parameter Types . . . . . . . . . . . . . 62
Fiber Bundle Data Access . . . . . . . . . . . . . . . . 63

5.2.3 Rendering Modules . . . . . . . . . . . . . . . . . . . . 65
Geometric Algebra . . . . . . . . . . . . . . . . . . . . 66
OpenGL . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Using OpenGL in a Rendering Module . . . . . . . . . 67

5.2.4 Vish Scripts . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3 Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4 Data Field Interpolation and Finding Local Coordinates . . . 77

5.4.1 UniGrid . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.4.2 Multiblock . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.4.3 Curvilinear . . . . . . . . . . . . . . . . . . . . . . . . 85

Local Coordinates in one Hexahedral Cell . . . . . . . 86
Finding Candidates in the Grid . . . . . . . . . . . . . 89
Summarizing the Steps . . . . . . . . . . . . . . . . . . 91

5.5 Basic Visualization Modules . . . . . . . . . . . . . . . . . . . 93
5.5.1 Coordinate Grid . . . . . . . . . . . . . . . . . . . . . 93
5.5.2 Coordinate Grid Box . . . . . . . . . . . . . . . . . . . 94
5.5.3 Uniform Grid Lines . . . . . . . . . . . . . . . . . . . . 95
5.5.4 Color Map Legend . . . . . . . . . . . . . . . . . . . . 95
5.5.5 Multiblock Outlines . . . . . . . . . . . . . . . . . . . . 97



CONTENTS 5

6 Computation and Visualization 99
6.1 Defining Initial Conditions for Integral Lines . . . . . . . . . . 100

6.1.1 Initial Positions, Seed Points . . . . . . . . . . . . . . . 100
Geometric Point Distributions . . . . . . . . . . . . . . 101
Random Point Distribution . . . . . . . . . . . . . . . 105
Grid Union, Convolution and Transformation . . . . . 107

6.1.2 Defining Initial Directions . . . . . . . . . . . . . . . . 111
Grid Subtraction . . . . . . . . . . . . . . . . . . . . . 111

6.2 Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.2.1 Computing First Order Integration Lines . . . . . . . . 121
6.2.2 Computing Second Order Integration Lines . . . . . . . 126

6.3 Rendering Lines . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7 Applications 141
7.1 Visualizing Flow of CouetteFlow . . . . . . . . . . . . . . . . . 142
7.2 Visualizing Flow and Pressure in a Stirred Fluid Tank . . . . . 149
7.3 Visualizing Geodesics in a sampled Schwarzschild Metric . . . 160
7.4 Visualizing Geodesics in a sampled Kerr Metric . . . . . . . . 179
7.5 Fiber Tracking in MRI Data . . . . . . . . . . . . . . . . . . . 205

8 Future Work 209

9 Conclusion 211

10 Fazit 213

A Acknowledgements 221

B Definition of Fiber Bundles 222

C Related Publications 223



Chapter 1

Introduction

The objective of this thesis is to provide a visualization framework suitable
for exploring numerical spacetimes originating from astrophysical numerical
relativity.

Numerical relativity is a very active research area. Having immense com-
puting power available, numerical methods allow to solve the Einstein field
equations, chapter 2.2.1, as is was not possible before. One specific applica-
tion is the detection of gravitational waves. Gravitational waves have not yet
been directly measured, but a Nobel Prize was given to Hulse and Taylor,
[44], for finding a convincing indirect evidence. They measured timings in
a binary pulsar. The observed frequency increase can only be explained by
energy loss due to the emission of gravitational waves. Thus, the waves them-
selves have not yet been measured, but their effect on the emitting systems
has been observed. Gravitational waves are ripples in spacetime curvature
propagating with the speed of light. “Any mass in nonspherical, nonrecti-
linear motion produces gravitational waves (...), but gravitational waves are
produced most copiously in events such as the coalescence of two compact
stars, the merger of massive black holes, or the big bang.” [36]

Detectors for gravitational waves have been built in the United States in
Livingston, Louisiana, in Hanford, Washington [39], in Europe in Hannover,
Germany [29], and near Pisa, Italy [24]. In order to detect a gravitational
wave, relative distance changes in the order of 10−22 have to be measured.

Numerical analysis of situations involving strong gravity, such as the
merging of black holes is of great importance. These simulations can be
used to match the actually measured data of the gravitational wave detec-
tors. Interactive 3D visualization techniques based purely on numerical data
helps to analyze these simulations. This thesis focuses on the visualization of
geodesics, the shortest (or longest) path between points in space (or space-
time). They are important indicators of the structure of spacetime.
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CHAPTER 1. INTRODUCTION 7

Geodesics in curved spacetimes have been studied before, but most work
is related to the visualization of analytic spacetimes, 1992 [2], 1997 [26], 1999
[22], 2001 [15] and 2004 [28]. Computing geodesics is required for ray-tracing
black holes. In 1991 Corvin Zahn at the University of Tübingen implemented
four dimensional ray-tracing in an analytic Schwarzschild space time, [63].
The most similar work was done already in 1992 by Steve Bryson, who im-
plemented geodesic visualizations for exploration using a “boom mounted six
degree of freedom head position sensitive stereo CRT system”, [17]. For his
setup the curved spacetimes could be given by closed formulas or also on
simple uniform grids.

Geodesics were also analyzed in numerical spacetimes in the 2D (axisym-
metric) era. The famous “pair of pants” picture contains the event horizon
in a head-on collision, along with some geodesics. The corresponding movies
were made in 1995 with great effort in TV resolution, see e.g. [43]. Werner
Benger at the University of Innsbruck simulated a black hole by raytracing
in 1996 [4]. Andrew Hamilton implemented a real time flight simulator for a
charged black hole. He uses a projective technique to compute the paths of
geodesics, [35].

Spacetimes visualized in this thesis are sampled on uniform grids. How-
ever, the developed infrastructure used in this work easily extends to adaptive
mesh refinement (AMR) grids, which are currently used for numerical simu-
lations of merging and colliding black holes, without changing the computa-
tion and visualization algorithms. Moreover, the rudimentary visualization
of geodesics can be enhanced with other visualization modules, for instance
to show the coordinate-acceleration, equation (2.53), on the geodesics.

Inspired by Bryson’s seeding methods for geodesics I developed a flexible
technique for the creation of seeding geometries using basic operating blocks
based on the theory of fiber bundles, that can be combined to a huge variety
of seeding geometries.

In addition to the visualization and computation, other aspects have been
addressed in this work:

� the data model

� high code re-usability

� high modularity

� provide an introduction to utilized software environments and libraries

The modern scientific world uses many computational methods in different
scientific domains. The requirement of collaborations increases and thus
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exchanging data becomes important. During my research visit at Louisiana
State University I was taught that in 2005 hurricane Katrina forced scientific
groups to exchange their data sets and couple different kinds of numeric
simulations to predict the path of Katrina to provide warning and rescue to
the public. For example, actual satellite data was coupled with simulation of
the motion of air of the hurricane, which was then coupled with a simulation
for wave propagation on the ocean. Such coupling is only possible if data
can be exchanged without time-consuming data conversion processes between
the different scientific groups. The simulation results were later gathered
in a visualization combining several layers stemming from all the different
domains, [14].

The thesis starts with a short theoretical part providing the necessary
mathematical and physical background of general relativity, computational
fluid dynamics and magnetic resonance imaging needed for the visualization
and interpretation of the resulting illustrations, chapter 2.

Thereafter, some C++ programming techniques used for implementation
are presented in chapter 3. Template meta programming is covered for en-
hancing overall source code re-usability.

Chapter 4 introduces and describes the concepts of the data model used
throughout this thesis. Utilizing this data model made it possible to easily
apply the developed algorithms to other applications such as medical imag-
ing. It also enhanced source code re-usability because algorithms could be
reused in situations that had not been possible without such a strong concept
at the software foundation level.

Chapter 5 introduces the visualization environment that was used to im-
plement the algorithms. It consists of a very flexible and modular system of
software components that can be easily extended. During the implementa-
tion several parts of the software environments were refined and additional
features where added to the software kernel.

The core work of the thesis is described in chapter 6. Concepts and al-
gorithms for computing geodesics and streamlines are presented there and
finally verified and utilized in chapter 7. The initial objective of comput-
ing geodesics was widened to the computation of integral lines. A simpler
application scenario was chosen to develop the basic software infrastructure,
which was later extended to the final application. Especially during the work
on the foundations, it was possible to apply some of the new techniques in
collaborative work that led to publications, appendix C.

A clarifying review of the available infrastructure was essential for the
success of this work. While creating a tutorial and complementing program-
ming and user documentation of the research I got the necessary insights to
develop the key concepts of the visualization framework. Still there is no good
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overall getting-started-documentation for someone who also might want to
utilize the visualization and data environments as yet, because it is research
software and no commercial environment. I decided to give quite detailed
descriptions and source code excerpts throughout the thesis. Thus, many
parts of the thesis can also be read as an introductory to the visualization
environment Vish and the Fiber Bundle data library.



Chapter 2

Theoretical Background

This chapter briefly captures the mathematical and physical background of
the thesis. It follows the descriptions of [55], [36], [6], [5], [38],[54], [47] and
[40], which were adapted to the requirements of the thesis.

Following notations were used:

� Einstein summing convention is used. Same indices occurring at upper
and lower position are summed up: ανβ

ν = α1β
1 + α2β

2 + . . .

� Partial derivation is written as index: ∂f
∂x

:= f,x

2.1 Differential Geometry

2.1.1 Manifolds and Charts

Let S be a set. Then P(S) is the set of all subsets of S, called the power
set of S. [49]

Let X be a set ∧ P be the power set. A subset τ ⊆ P(X) is a topology
if:

� arbitrary unions of elements of τ are contained in τ , i.e. if I is an
arbitrary (also infinite) set of indices and ∀i ∈ I : Ui ∈ τ then

⋃
i∈I Ui ∈

τ ,

� finite intersections of elements of τ are contained in τ , i.e. if U0, U1,
..., Un ∈ τ then

⋂n
i=0 Ui ∈ τ with n = N,

� the empty set and the set X itself are contained in τ , i.e. ∅, X ∈ τ

The pair (X, τ) of a set X together with a topology τ on this set is a topo-
logical space. The elements of a topological space are called points. [6]

10
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Two topological spaces X, Y are homeomorphic, if there exists a bijec-
tive map H : X → Y such that open sets of X are mapped to open sets in
Y and vice versa, i.e. the neighborhood relations must be sustained under
this mapping.
H is called homeomorphism or topological map.

A topological space X is a Hausdorff space iff for any two distinct points
x, y ∈ X there exist two distinct neighborhoods Ux, Uy such that Ux ∩ Uy =
{}.

A manifold is a Hausdorff space that is locally homeomorphic to Eu-
clidean space Rn.

A manifold is a topological space which locally looks like the Rn with the
usual topology [54].

A chart is a {xµ} bijective and differentiable mapping (a diffeomorphism)
from a point P of a manifold M to a n-tuple of scalar numbers.

q : M → Rn

P 7→ {(xµ(P )} (2.1)

The numbers xµ(p) are called the coordinates of the point p in the chart
{xµ} and xi is the ith coordinate function. [6] A chart that does not cover
the complete manifold M is called a local chart.

Later, spherical and Cartesian charts are used to represent the metric of
curved space times. The spherical chart {xµ̄}, with x1̄ ≡ x, x2̄ ≡ y and
x3̄ ≡ z, is transformed to Cartesian chart {xµ}, with x1 ≡ r, x2 ≡ θ and
x3 ≡ φ:

x(r, θ, φ) = r · sinθ · cosφ
y(r, θ, φ) = r · sinθ · sinφ
z(r, θ, φ) = r · cosθ

(2.2)

And the transformation from {xµ} to {xµ̄} is:

r(x, y, z) =
√
x2 + y2 + z2

θ(x, y, z) = arctan

(√
x2+y2

z

)

φ(x, y, z) =


π/2 : x = 0, y > 0

3π/2 : x = 0, y < 0

arctan y
x

: x > 0

arctan y
x

+ π : x < 0

(2.3)
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2.1.2 Curve

A curve is a mapping from a scalar s ∈ R, the so called curve parameter, to
a point on a manifold.

q : R → M
s 7→ q(s)

(2.4)

To describe a curve in a certain chart {xµ} the chart-function is used to
extract a function for each coordinate of the chart:

qµ : R → R
s → qµ(s) = xµ(q(s)) ≡ xµ ◦ q(s) (2.5)

2.1.3 Tangential Vector

The tangential vector of a curve q(s) is defined by the operation d
ds

:

d

ds
f(q(s)) := lim

h→0

f(q(s+ h))− f(q(s))

h
(2.6)

In a certain chart {xµ}:
d

ds
f(q(s)) =

d

ds
f(x0(q(s)), x1(q(s)), . . . ) =

∂f

∂xµ
dxµ(q(s))

ds
(2.7)

=
dxµ(q(s))

ds

∂

∂xµ
f

=
dqµ(s)

ds

∂

∂xµ
f =: q̇µ(s)

∂

∂xµ
f

= f,µq̇
µ

d

ds
= q̇µ(s)

∂

∂xµ
=: q̇ (2.8)

The functions q̇µ are the components of the tangential vector in the chart
{xµ}. If f is a chart-function xν , then d

ds
is the νth component q̇ν :

d

ds
xν(q(s)) = q̇µ(s)

∂xν

∂xµ
= q̇(s)δνµ = q̇ν(s) (2.9)

The partial derivatives ∂
∂xµ

span a vector space at a point P of a manifold M :
the tangential vector space TP (M). Thus, the chart-functions xµ induce a
basis { ∂

xµ
} in TP (M).

∂µ :=
∂

∂xµ
(2.10)
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Transformation

A tangential vector can be represented in different charts. For the basis of
the tangential space {∂µ} and the charts {xµ} and {xµ̄}

~∂ ≡ ∂

∂xµ̄
=
∂xµ

∂xµ̄
· ∂

∂xµ
=: αµµ̄ · ~∂ (2.11)

with αµµ̄ being the inner derivatives of the coordinate transformation:

αµµ̄ = ∂xµ(xµ̄)
∂xµ̄

and αµ̄µ = ∂xµ̄(xµ)
∂xµ

. (2.12)

Now, the tangential vector can be written as:

v = vµ∂µ = vµ̄∂µ̄ = vµ̄(αµµ̄∂µ) (2.13)

It follows:

vµ = αµµ̄v
µ̄ ∂µ = αµ̄µ∂µ̄ (2.14)

To fully describe the chart transformation αµµ̄(xµ), αµ̄µ(xµ), αµµ̄(xµ̄) and
αµ̄µ(xµ̄) are needed, which can be written as transformation matrices.

One such transformation matrix is used in section 7.3 and section 7.4 to
transform a metric given in spherical Coordinates to Cartesian coordinates.
The according transformation matrix is:

αµ̄µ(xµ) =


∂r
∂x

= x√
x2+y2+z2

∂r
∂y

= y√
x2+y2+z2

∂r
∂z

= z√
x2+y2+z2

∂θ
∂x

= xz√
x2+y2(x2+y2+z2)

∂θ
∂y

= yz√
x2+y2(x2+y2+z2)

∂θ
∂z

= −
√
x2+y2

x2+y2+z2

∂φ
∂x

= −y
x2+y2

∂φ
∂y

= x
x2+y2

∂φ
∂z

= 0


(2.15)

2.1.4 Covector

Let v ∈ TP (M) be a vector and f : M → R a real valued function on the
manifold. Then applying the tangential vector vof f yields a number:

v(f) ∈ R (2.16)

Above we examined this expression for a fixed vector v and arbitrary function
f . Alternatively, we can study it for arbitrary v and fixed function f . This
way it defines the function df which maps a tangential vector v to a number
df(v) ∈ R:

df : TP (M) → R
v → df(v) := v(f)

(2.17)
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The function df is called 1-form. 1-forms fulfill the vector space axioms:

(a·df+b·dg)(v) = v(a·f+b·g) = a·v(f)+b·v(g) = a·df(v)+b·dg(v) (2.18)

and thus span a vector space, called the cotangential space T ∗P (M). Its
elements, calles covectors, are linear maps TP (M)→ R.

2.1.5 Tensor Field

Physical quantities are independent of an underlying coordinate system. This
is known as the “principle of covariance”. Mathematically, tensors are used
to describe such quantities. A tensor can be written in any coordinate basis.
The name tensor originates from its usage in continuum mechanics, where a
tensor of rank two is used to describe stresses, [40] or [41].

An m×n tensor F is a multilinear mapping from Cartesian products of
n tangential spaces TP (M) and m cotangential spaces T ∗P (M) into R at some
point P of a manifold:

F : (TP (M))n × (T ∗P (M))m
multilinear

→ R (2.19)

m×n is the rank of the tensor. The vector space spanned by tensors is called
the tensor product space

(T ∗P (M))⊗n⊗ (TP (M))⊗m := { (TP (M))n× (T ∗P (M))m
multilinear

→ R}, (2.20)

whereby X⊗n denotes the nth tensor product of the space X with itself. Due
to the duality relations T ∗P (M) ↔ TP (M), the tensor product space can be
seen as the space of linear functions that map elements from the dual tensor
product space to a number:

(T ∗P (M))⊗n⊗ (TP (M))⊗m = { (TP (M))⊗n⊗ (T ∗P (M))⊗m
linear

→ R }, (2.21)

With V, U two tensor product spaces, we see

V ⊗ U = { V ∗ × U∗
multilinear

→ R } = { V ∗ ⊗ U∗
linear

→ R } (2.22)
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and

V ∗ ⊗ U∗ = { V × U
multilinear

→ R } = { V ⊗ U
linear

→ R } (2.23)

It follows from equation (2.21) that V ∗ ⊗ U∗ ≡ (V ⊗ U)∗. [6]
The tensor field t is a mapping from a point P of a manifold M to a

tensor in the tangential space TP (M).

t :M → (T ∗P (M))⊗n ⊗ (TP (M))⊗m (2.24)

Tensor fields are used in many physical and technical applications, for exam-
ple, to describe distributions of temperature, velocity, stress or curvature in
space and time.

A tensor field of rank 0 × 0 is a scalar field M → R. A tensor field of
rank 0× 1 is a vector field v : M → TP (M). [6]
A metric field is of rank 2× 0.

2.1.6 Metric

A metric G is a symmetric bilinear form on tangential vectors of a manifold.
G is a bilinear mapping TP (M)×TP (M)→ R. With u, v, w being tangential
vectors, λ a scalar:

G(u+ λ · w, v) = G(u, v) + λ ·G(w, v)
G(u, v + λ · w) = G(u, v) + λ ·G(u,w)

G(u, v) = G(v, u)
(2.25)

In general relativity a metric tensor field is used to describe the curvature of
spacetime. The metric at one point of a manifold is represented as a 4 × 4
matrix gµν . Because of its symmetry it has 10 independent components. In
this work the signature (+,−,−,−) is used. Thus, the spatial components
have a negative sign in contrast to the time components which are positive.

There exist three types of tangential vectors:

� G(v, v) > 0↔ v is called time-like

� G(w,w) = 0↔ w is called light-like

� G(u, u) < 0↔ u is called space-like
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The metric defines lengths of and angles between vectors. The length of a
time-like tangential vector is

|v| :=
√
G(v, v) (2.26)

and of a space-like tangential vector it is

|u| :=
√
−G(u, u). (2.27)

The angle between two space-like tangential vectors is

cosα(u, v) :=
G(u, v)

|u| · |v|
=

G(u, v)√
G(u, u) ·G(v, v)

(2.28)

A metric is written in a certain chart {xµ} as follows:

G(u, v) = G(uµ∂µ, v
ν∂ν) = uµ · vν ·G(∂µ, ∂ν) =: uµvνgµν (2.29)

For example, the metric tensor for flat space times in Cartesian and spherical
coordinates are:

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 g̊µν =


1 0 0 0
0 −1 0 0
0 0 −r2 0
0 0 0 −r2sin2θ

 (2.30)

If a metric is invertible the co-metric is defined via the Kronecker delta and
is the inverse of the metric:

gµνg
νλ = δλµ (2.31)

2.1.7 Geodesic Equation and Christoffel Symbols

Geodesic Equation

A geodesic is a curve with extremal length on a manifold. The length of a
curve along a parameter interval s can be computed by integration using the
metric tensor of equation (2.29):∫ s

0
gq(σ)(q̇(σ), q̇(σ))︸ ︷︷ ︸ dσ

:= L
(2.32)

To compute the extremum of the length we choose this expression as the
Lagrange function and compute the total differential:

dL =
∂L
∂s
ds+

∂L
∂qk(s)

dqk(s) +
∂L

∂q̇k(s)
dq̇k(s) (2.33)
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with:

dqk(s) = ∂qk(s)
∂s

ds, ∂qk(s)
∂s

= ˙qk(s) and qk(s) = xk(q(s)) (2.34)

dL =

(
∂L
∂s

+
∂L
∂xk

q̇k(s) +
∂L

∂q̇k(s)
q̈k(s)

)
ds (2.35)

The partial derivative ∂L
∂s

is 0, since L is not dependent on s. For minimization
we claim:∫

dL =

∫ (
∂L
∂xk

q̇k(s) +
∂L

∂q̇k(s)
q̈k(s)

)
ds = 0 (2.36)

Now we use partial integration on the second term in the integral of equation
(2.36) to further simplify the equation:∫

f ′ g = f g −
∫
g f ′∫

q̈k(s) ∂L
∂q̇k(s)

= q̇k(s) ∂L
∂q̇k(s)

−
∫

d
ds

∂L
∂q̇k(s)

q̇k(s)
(2.37)

Insertion of equation (2.37) in equation (2.36) yields:

= 0 = const∫ ︷ ︸︸ ︷
∂L
∂xk
− d

ds

∂L
∂q̇k(s)

 q̇k(s)ds+

︷ ︸︸ ︷
q̇k(s)

∂L
∂q̇k(s)

= 0
(2.38)

the last term in equation (2.38) is a constant term and thus must be 0. Also,
the term in brackets () must be 0 because ∂L must be an extremum for any
curve q(s). This, simplifies the equation to:

∂L
∂xk
− d

ds

∂L
∂q̇k(s)

= 0 (2.39)

We introduce coordinates and compute the terms of equation (2.39) using
the Einstein notation :

L = gq(s)(q̇(s), q̇(s)) = gµν · q̇µ(s) · q̇ν(s) (2.40)

First term of equation (2.39):

∂L
∂xα

= L,α = gµν,αq̇
µq̇ν + gµν q̇

µ
,αq̇

ν + gµν q̇
µq̇ν,α = gµν,αq̇

µq̇ν + 2gµν q̇
µ
,α (2.41)
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The metric tensor is symmetric. Thus coordinate indices may be flipped and
the two terms containing gµν be added. The term finally vanishes because:

q̇ν,α = ∂q̇ν

dxα
= 0 → L

∂xα
= gµν,αq̇

µq̇ν (2.42)

Second term of equation (2.39):

= 0 = δµα = δνα

∂L
∂q̇α(s)

=

︷ ︸︸ ︷
∂gµν
q̇α(s)

q̇µ(s)q̇µ(s) + gµν

︷ ︸︸ ︷
∂q̇µ

q̇α(s)
q̇ν(s) + gµν q̇

µ(s)

︷ ︸︸ ︷
∂q̇ν

q̇α(s)

(2.43)

Again, using the symmetry of gµν :

∂L
∂q̇α(s)

= gαν q̇
ν + gµαq̇

µ = 2gµαq̇
µ (2.44)

d

ds

∂L
∂q̇α(s)

= 2(
d

ds
gµαq̇

µ + gµα
d

ds
q̇µ) (2.45)

d

ds
gµα =

∂gµα
∂xν

d

ds
qν = gµα,ν q̇

ν (2.46)

d

ds
q̇µ = q̈µ (2.47)

d

ds

∂L
∂q̇α(s)

= 2(gµα,ν q̇
ν q̇µ + q̈µq̇µ) (2.48)

All necessary terms are derived now. Insertion of equation (2.46) in equation
(2.45) and further in equation (2.39) and equation (2.42) in equation (2.39):

gµν,αq̇
µq̇ν − 2(gµα,ν q̇

µq̇ν + gµαq̈
µ) = 0 (2.49)

−2gµαq̈
µ − 2(gµα,ν −

1

2
gµν,α)q̇µq̇ν = 0| · (−1

2
gαλ) (2.50)

q̈µ+
1

2
gαλ(2gµα,ν − gµν,α)︸ ︷︷ ︸ q̇µq̇ν = 0

=: Aλµν

(2.51)
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Introducing the abbreviationAλµν , where only the symmetric part contributes:

−q̈ = Aλµν q̇
µq̇ν = Aλνµq̇

µq̇ν = Aλνµq̇
ν q̇µ =

1

2
(Aλµν + Aλνµ)︸ ︷︷ ︸ q̇ν q̇µ

=: Γλµν

(2.52)

With Γλµν called the Christoffel Symbols, the final geodesic equation is:

q̈λ = Γλµν q̇
µq̇ν (2.53)

and Christoffel symbols:

Γλµν :=
1

2
gλα
(

1

2
(2gµα,ν − gµν,α) +

1

2
(2gνα,µ − gνµ,α)

)
(2.54)

Γλµν :=
1

2
gλα(gµα,ν + gνα,µ − gµν,α) (2.55)

The geodesic q(s) is an integral line because solving the equation (2.53)
involves integration for computation. It is of second order since it is defined
via a second order derivative. To solve for q(s) the boundary conditions for
q̇(0) and q(0) are required. The second derivative q̈ can be interpreted as an
acceleration. Since a geodesic represents an unaccelerated motion in curved
spacetime this term is more precisely called coordinate-acceleration.

Christoffel Symbols

To study the structure of Christoffel symbols four specific symbols are ex-
panded. Here, it is assumed a 3D space. Consider a metric tensor g in xyz
coordinates. The dimension of g is 3×3 and we have to compute 3×3×3 = 27
Christoffel symbols. Expanding Γλµν for λ = x, µ = x and ν = x for Γxxx yields:

Γxxx = 1
2
[ gxx(gxx,x + gxx,x − gxx,x)+
gxy(gxy,x + gxy,x − gxx,y)+
gxz(gxz,x + gxz,x − gxx,z)]

(2.56)

Γxxx =
1

2
(gxx(gxx,x) + gxy(2gxy,x − gxx,y) + gxz(2gxz,x − gxx,z)) (2.57)
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Next, three more Chirstoffel symbols are expanded varying just one index,
e.g. λ = y, Γyxx yields:

Γyxx = 1
2
[ gyx(gxx,x + gxx,x − gxx,x)+
gyy(gxy,x + gxy,x − gxx,y)+
gyz(gxz,x + gxz,x − gxx,z)]

(2.58)

Γyxx =
1

2
(gyx(gxx,x) + gyy(2gxy,x − gxx,y) + gyz(2gxz,x − gxx,z)) (2.59)

The Christoffel symbol with ν = y, Γxxy yields:

Γxxy = 1
2
[ gxx(gxx,y + gyx,x − gxy,x)+
gxy(gxy,y + gyy,x − gxy,y)+
gxz(gxz,y + gyz,x − gxy,z)]

(2.60)

The Christoffel symbol with µ = y, Γxxy yields:

Γxyx = 1
2
[ gxx(gyx,x + gxx,y − gyx,x)+
gxy(gyy,x + gxy,y − gyx,y)+
gxz(gyz,x + gxz,y − gyx,z)]

(2.61)

When comparing the terms of equation (2.56) and equation (2.58) it can
be seen that the terms in between the round brackets () remain unchanged,
since they depend on indices µ and ν only. The same holds when comparing
the terms of equation (2.60) and equation (2.61). Because of the symmetry
of the metric tensor gµν ( e.g. gxy,x == gyx,x ) the terms in round brackets
() are equal.

Because of the symmetry property of the metric tensor also the Christof-
fel Symbols are symmetrical. In the 3D case the number of independent
components is reduced from 27 to 18, in 4D from 64 to 40.

2.1.8 Geodesic Deviation and Riemann Tensor

The geodesic deviation describes the change in separation of neighboring
geodesics. The Riemann Tensor connects the deviation of the parallelism of
neighbored geodesics to the curvature of the spacetime:

Kγ
µδβ = Γγβµ,δ − Γγδµ,β + ΓκβµΓγδκ − ΓκδµΓγβκ (2.62)

The Riemann tensor is of rank four1 and has 44 components in R4. However,
the number of independent components reduces to 20 when its symmetry
properties are analyzed, [38].

1or (1,3)
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2.1.9 Ricci Tensor and Scalar

The Ricci tensor is the only not vanishing contraction of the Riemann
tensor:

Rµν = Kκ
µκν (2.63)

The Ricci tensor is symmetric and has 10 independent components in R4.
Geometrically interpreted it sums up curvatures of orthogonal geodesics sur-
faces at an tangential vector v ∈ TP (M).

Further contraction of the Ricci tensor yields the so called Ricci scalar,
which is an invariant of the Ricci tensor.

R = Rµ
µ (2.64)
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2.2 General Relativity

In 1916 Albert Einstein introduced his relativistic theory of gravitation, see
[25]. The general relativity describes gravity, which is the geometry of a four
dimensional spacetime. Due to the curved spacetime an object that experi-
enced acceleration of a gravitational force in classical mechanics is unaccel-
erated in general relativity. In fact it is just moving uniformly on a straight
line, on a geodesic, but in a curved spacetime. Trajectories of photons and
free falling objects are represented by geodesics.

Using differential geometry, spacetime is described by an infinitesimal
small line element specifying a distance between any two neighboring points.
A four dimensional metric, section 2.1.6, is used for that purpose:

ds2 = gµνdx
µdxν (2.65)

A metric tensor field describes the curvature at every point of the spacetime
manifold, section 2.1.6.

2.2.1 Einstein Field Equation

The heart of the general relativity theory is the equation that correlates mat-
ter and energy with the spacetime curvature. It is known as the Einstein field
equation. When a distribution of matter is given, the spacetime curvature
can be computed by this equation.

Rµν −
1

2
gµνR = 8πGTµν (2.66)

The left hand side of equation (2.66) describes the curvature of spacetime
using the Ricci tensor and the Ricci scalar, section 2.1.9. The right hand
side describes the distribution of matter by a tensor of rank two.

Tµν is called the energy-momentum-stress tensor and at it full complexity
captures a scalar field for energy density, a vector field for the motion of
matter, a scalar field for pressure, a space-like tensor field for stress and a
vector field for energy flux.

The equation (2.66) is a coupled system of differential equations of second
order, which to the full extend can only be solved numerically. However, some
analytic solutions exist that make use of strong simplifications.

For example, for solutions in pure vacuum the equation simplifies to
Rµν = 0. The Schwarzschild metric and the Kerr metric are such analytic
vacuum solutions of the Einstein field equation.



CHAPTER 2. THEORETICAL BACKGROUND 23

2.2.2 Schwarzschild Metric

“The solution of the field equations, which describe the field outside of a
spherical symmetric mass distribution, was found by Karl Schwarzschild only
two months after Einstein published his field equations. ... From this solution
he derived the precession of the perihelion of Mercury and the bending of
light rays at the surface of the sun.” [54]

The metric is expressed in spherical coordinates, with m being the mass
expressed as a length:

m(in cm) := G
c2
M(in g) (2.67)

g =

(
1− 2m

r

)
dt2 − dr2

1− 2m/r
− r2(dθ2 + sin2θdφ2) (2.68)

To write g in matrix form the equation is expanded and the terms that are
multiplied by the squared derivatives are extracted:

g =


1− 2m

r
0 0 0

0 −
(
1− 2m

r

)−1
0 0

0 0 −r2 0
0 0 0 −r2sin2θ

 (2.69)

The according Christoffel symbols in polar coordinates are, [36]:

Γttr = (m/r2)(1− 2m/r)−1 Γθrθ = 1/r
Γrtt = (m/r2)(1− 2m/r) Γθφφ = −cosθsinθ
Γrrr = −(m/r2)(1− 2m/r)−1 Γφrφ = 1/r

Γrθθ = −(r − 2m) Γφθφ = cotθ

Γrφφ = −(r − 2m)sin2θ

(2.70)

Important properties of the Schwarzschild Metric:

� It is time independent and, thus, a stationary and static metric field.

� It is spherically symmetric.

� It has a singularity at r = 0 and r = 2m (Schwarzschild radius).

The radius of a static star is always outside the Schwarzschild radius. “The
Schwarzschild radius of the sun, for instance, is 2GM/c2 = 2.95 km - much
smaller than the radius of the solar surface 6.96× 105 km.” [36].
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The singularity at r = 0 is a physical singularity at the center point.
Here, curvature and mass becomes infinite.

The Schwarzschild radius is a singularity induced by the coordinate sys-
tem. Other coordinates, such as Eddington-Finkelstein coordinates can be
used to eliminate this singularity. However, it still has a physical meaning.
Light rays or particles passing this radius towards the center cannot escape
the heavy mass. The surface at the Schwarzschild radius is called the event
horizon of a black hole.

Properties of the Schwarzschild metric are explored by visualizing
geodesics in section 7.3.

2.2.3 Kerr Metric

The Kerr metric was discovered by Roy Kerr in 1963. They are a general-
ization of the Schwarzschild metric by rotation. It can describe the actual
endstate of collapsed astrophysical objects quite well. Besides the mass now
an additional parameter, the angular momentum, controls the spacetime ge-
ometry. The so called “no hair theorem” states that at the endstate of a
collapse only three quantities are conserved: the mass, the angular momen-
tum and the electric charge, see [20].

“Yet the evidence of both theoretical investigation and numerical simula-
tions is that the endstate of any realistic gravitational collapse that proceeds
far enough is remarkably simple, analogous in many ways to the special case
of spherical collapse. ...
From the perspective of a distant observer, the endstate is indistinguishable
from a time-independent Kerr black hole characterized by just mass M and
angular momentum J, with a horizon that conceals the singularity in it. ...
Kerr black holes thus provide the cleanest connection between fundamental
gravitational physics and realistic astrophysics.”[36]

The Kerr metric is formulated in Boyer-Lindquist coordinates, with:

a = J/M

∆ = r2 − 2Mr + a2 (2.71)

ρ2 = r2 + a2cosθ

The parameter a is called the Kerr parameter. If a = 0 then the Boyer-
Lindquist coordinates are equivalent to the Schwarzschild coordinates. The
metric is:

g =
∆

ρ2
[dt−asin2θdφ]2− sin

2θ

ρ2
[(r2 +a2)dφ−adt]2− ρ

2

∆
dr2−ρ2dθ2 (2.72)
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Written in components:

(t, t) : ∆
ρ2dt

2 − sin2θ
ρ2 a2dt2 → gtt = 1

ρ2 (∆− a2sin2θ)

(r, r) : −ρ2

∆
dr2 → grr = −ρ2

∆

(θ, θ) : −ρ2dθ2 → gθθ = −ρ2

(φ, φ) : ( ∆
ρ2a

2sin4θ − sin2θ
ρ2 (r2 + a2)2)dθ2 → gφφ = sin2θ

ρ2 (∆a2sin2θ−
−(r2 + a2)2)

(φ, t) : (−∆
ρ2 2asin2θ + sin2θ

ρ2 2(r2 + a2)a)dφdt → gφt = sin2θ
ρ2 2a·
·((r2 + a2)−∆)

(2.73)

Written in matrix form:

g =


gtt 0 0 gφt
0 grr 0 0
0 0 gθθ 0
gtφ 0 0 gφφ

 (2.74)

Important properties of the Kerr metric:

� For r �M and r � a the metric as asymptotically flat, a flat spacetime
far from the black hole.

� It is stationary axisymmetric. As the Schwarzschild metric it is inde-
pendent of t. Also it is independent on φ.

� It reduces to Schwarzschild when a = 0.

� It has a singularity at ρ = 0 (r = 0 and θ = π/2) and at ∆ = 0.

Similar to the Schwarzschild metric the real physical singularity is at
ρ = 0, where curvature gets infinite. In contrast to the Schwarzschild metric
the singularity has the shape of a ring. The second singularity is a coordinate
singularity. ∆ vanishes at r± = M ±

√
M2 − a2. The radius r+ relates to the

event horizon in the Schwarzschild case.
The radius of the horizon r+ exists only for a <= M and thus the angular

is limited. When a = m then the metric is called an extreme Kerr black hole.
Properties of the Kerr metric are explored by visualizing geodesics in

section 7.4.
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2.3 Fluid Dynamics

Computational fluid dynamics (CFD) uses numerical techniques to solve the
equations describing the mechanics of fluids, such as the Navier Stokes equa-
tions. These equations are second order partial differential equations which
cannot by solved analytically when, for example, complex boundary geome-
tries have to be captured.

With increasing computing power simulation results grow in resolution
and size in respect to time and space. Typical results of simulations are
tensor fields describing pressure, velocity, density and stress. The field that
captures the motion of fluid particles is the velocity field.

Mathematically, it is a time dependent vector field with the vector v ∈
TP (M) being an element of the tangential space at a point P of a manifold
M .

Based on such a vector field integral lines q(s) ⊂M can be computed. In
CFD four different types of integral lines are used for exploring the velocity
field, [16], also included in appendix C:

� Path lines or trajectories follow the evolution of a test particle as it
is dragged around by the vector field over time.

� Stream lines or field lines represent the instantaneous direction of the
vector field (no time evolution). They are identical to path lines if the
vector field is constant over time.

� Streak lines represent the trace of repeatedly emitted particles from
the same location, such as the trail of smoke.

� Material lines or time lines depict the location of a set of particles,
initially positioned along a seed line, under the flow of the vector field.

Figure 2.1 and figure 2.2 illustrate these different types of integral lines
in a vector field.

In this thesis stream lines were visualized as a pre-stage to geodesics.
With v denoting the vector field, stream lines are defined as:

q̇(s) = v(q(s)) (2.75)

The stream line is a integration line of first order and, thus, one boundary
condition q(0) is required to solve for q(s). The numerical computation of
streamlines is described in section 6.2 and results are shown in section 7.1
and section 7.2.
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Figure 2.1: Left: Stream line in a vector field. The stream line follows the
vector field at a frozen instance of time. The stream line parameter is not
dependent on the time. Right: Path line in a vector field. It represents the
trajectory of a particle moving through the vector field over time. If the
vector field is stationary the path line is also a stream line.
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Figure 2.2: Left: Streak lines are the connection of particles continuously
emitted from the same location over time in a vector field. It is the connection
of endpoints of the path lines of each particle. Right: Material lines are the
time evolution of lines over time in a vector field. Each point on the line
corresponds to a particle of one path line.
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2.4 Medical Imaging

An application where tensor fields are used stems from medicine. The tech-
nology developed in magnetic resonance imaging (MRI) allows to capture the
diffusion of hydrogen in human tissue. The resulting tensor fields describe
the speed of diffusion in all spatial directions.

The aim of analyzing the anisotropic diffusion is to identify different kinds
of brain matters, such as white matter (elongated neurons) which has a high
directionality in contrast to grey matter (glial cells) which has very little
directionality.

As stated in [9], tumor regions are dominated by grey matter and thus
are regions with low directionality. Tensor field visualization can be used to
reveal such regions.

Finding accurate and robust visualization techniques could play an im-
portant role in diagnostics of brain tumor diseases using MRI scans. Early
and precise diagnostic and correct treatment is of great importance to pos-
sibly increase the survival rate which, at the moment, is of about 30% only,
see [9].

Mathematically the anisotropic diffusion is described by a scalar density
function Φ(x, t), e.g. the time-dependent concentration of water molecules:

∂Φ(x, t)

∂t
= ∇ ·D[∇Φ(x, t)] (2.76)

Here, D is called the flux and is a function of the concentration gradient
∇Φ(x, t). The flux D(v) can be expanded into a Taylor series in the Euclidean
chart {xµ} with chart-functions xi = ei:

D(v) = Di(v)ei =

(
Di(0) +Di,j(0)vj +

1

2
Dij,k(0)vjvk + ...

)
ei (2.77)

The constant flux Di(0) vanishes in equation (2.76) and the second term,
the Di,j(0) is a tensor of rank two. The tensor is symmetric and positive
definite, since particles move forward only (Di,j(0)vj > 0). Di,j(0) is called
the diffusion tensor.

The diffusion tensor is comparable to the metric tensor in general rel-
ativity, see equation (2.29), which is also symmetric and positive definite.
The geodesic equation (2.53) can be utilized, exchanging the metric with the
diffusion tensor, to compute geodesics in the diffusion field.

The geodesics then represent lines that follow the extremal diffusion
speed. In section 7.5 such spatial geodesics where computed in a numeri-
cal diffusion tensor field stemming from a MRI scan of a human brain.
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Implementation Concepts

Software can be implemented in a many different ways. Especially C++
provides a lot of flexibility on how problems can be solved and algorithms
can be implemented.

This chapter shortly describes how C++ template meta programming
can enhance code re-usability, what problems were encountered utilizing the
standard template library and it introduces a mechanism to equip classes
with interfaces at runtime.

3.1 Type Traits

The introduction of templates to C++ opened a wide range of new pro-
gramming concepts. Todd Veldhuizen described how to implement programs
evaluated at compile time using template meta programming1, see [59]. Tem-
plate meta programming theoretically2 provides a programming language in-
side C++ that is Touring complete (see [60]) and executes at compile time.
Functional programming techniques can be fully utilized to build template
programs.

Geoffrey Furnish discusses the pros and cons of using C++ for develop-
ment of numerical algorithms, see [31]. According to him, C++ code often
fails the programming paradigm of high re-usability because of its flexibility
to define data structures and classes. He recognized that exchanging and
reusing code is easier, for example, in FORTRAN when only limited data
structures, like predefined arrays, were used. However, one can use the power,
flexibility and speed of C++ while still developing highly reusable code. He

1The first meta program was written by Erwin Unruh and presented at a C++ standard
committee meeting in 1994: http://www.erwin-unruh.de

2Theoretically because of limited compilers, such as limited recursion depths.

29

http://www.erwin-unruh.de
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discusses and demonstrates the utilization of template meta programming to
create numerical algorithms independent on data container types.

Meta programming is based on template specializations. Listing 3.1
shows a simple example how a template function and specialization can be
used to return different strings dependent on a type.

Listing 3.1: Simple example of using template specialization to create
strings dependent on the template class type T.

1 template<class T> string getTypeStr ing ( )
2 {
3 return ”Unknown” ;
4 }
5

6 class MyType{ /* . . . */ } ;
7

8 template<> string getTypeString<MyType>()
9 {

10 return ”MyType” ;
11 }
12

13 /* . . . in the main program . . . */
14

15 string a = getTypeString<Foo >() ;
16 string b = getTypeString<MyType>() ;
17

18 /* . . . */

Line 1 defines the general template function that will be called with any
type not specialized. A specialization of the custom type MyType is shown
in line 8. In this example string a will contain "Unknown" and string b

"MyType".
The general template definition can be interpreted as a definition of an

interface. It ensures a valid call of the function with any type. When using
template classes or functions in such an interface defining way they are called
Type Traits in terms of C++ meta programming.

Type Traits can be used to add functionality to certain class types without
modifying the classes’ own definitions. Thus, defined classes implemented in
an external library can be equipped with functions in the own code, like de-
scribed in section 5.2.2, where functions for converting from and to a string

can be provided for any types by a Type Trait.
Functions can be gathered in template classed as well. Member functions

defined in the general template class are then similar to pure virtual functions
in classical object oriented programming.

This mechanism can be applied similar to polymorphism in classical ob-
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ject oriented programming. The next source code listing,listing 3.2, shows
an example. The ”virtual” function is called from within another template
class dependent on the template class type parameter.

Listing 3.2: Example of gathering encapsulated functionality of different
types in a unified interface template class enhancing code re-usability. A
new Computer doing some work can be add by introducing the according
Functor template specialization.

1 template <class T>
2 struct Functor
3 {
4 void doIt ( )
5 {
6 cout << ”Do what?” << endl ;
7 } ;
8 } ;
9

10 template <>
11 struct Functor<LaptopType>
12 {
13 void doIt ( )
14 {
15 doSomethingLaptopTypeSpeci f ic ( ) ;
16 } ;
17 } ;
18

19 template <>
20 struct Functor<WorkstationType>
21 {
22 void doIt ( )
23 {
24 doSomethingWorkstat ionTypeSpeci f ic ( ) ;
25 } ;
26 } ;
27

28 template<class T>
29 struct Computer
30 {
31 /* . . . */
32 void work ( )
33 {
34 /* . . . */
35 Functor<T> Operator ;
36 Operator . doIt ( ) ;
37 }
38 } ;
39

40 /* . . . */
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41

42 Computer<LaptopType> LT;
43 Computer<WorkstationType> WT;
44 −
45 LT. work ( ) ;
46 WT. work ( ) ;

Here, the template class Functor defines an interface by its member func-
tion doIt, line 1. Two specializations operating on different types encapsu-
late its functionality in their functions, line 10 and line 19. From within the
work function of the template class Computer the Functor is then used to
do the computation dependent on the template parameter T. Thus, the two
different computers declared in line 41 can operate using the same function
interface call work, line 45

I used a similar technique to implement different line integration algo-
rithms for different types of integral lines, see section 6.2. The core step
integration is provided by template specializations, while the main loop and
the code for reading and writing data is completely reused. I implemented a
KDTree using a template callback structure. This made the search algorithm
independent on the result data container. Any data structure can be filled
with the results. Just a few lines providing a template specialization have to
be added, see section 5.4.2.

The source code for templates is expanded, inserted and possibly in-
lined during compilation when being declared. Thus, the compiler can create
highly efficient code. Such meta-programming provides coding flexibility and
can reduce lines of codes tremendously when applied thoughtfully.

A good guide to C++ meta programming can be found in [58].
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3.2 STL Encapsulation

Container classes of the standard template library (STL) [52] are utilized
especially in the Fiber Bundle library, chapter 4. Though, the STL provides
a beautiful concept to iterate over its template container classes, these iter-
ators fail when classes are implemented over different dynamically linkable
objects, such as dlls. Microsoft operating systems do not allow STL objects
to be passed across library boundaries due to memory allocation issues. This
prevents their use in programming interfaces, [48].

To overcome this problem the Fiber Bundle library uses its own iterator
classes based on callbacks and wrapping the STL iteration. Such iterators
are, for example, used to iterate over Fiber Slices, Fiber Grids or field frag-
ments. In all that cases an iterator base class declaring a virtual apply

function is provided. The iterator base class has to be derived and imple-
mented and can then be utilized by calling the according iterate function.
A simple example on how to iterate over field fragments is given in listing
4.3.

3.3 Reference Pointers

Smart pointers are a basic design element in modern C++ software develop-
ment. They take care about their memory deallocation themselves. Native
pointers in C++ are not exception save. Smart pointers solve this issue. Ref-
erence counting pointers are smart pointers that keep track of the number of
references, pointers or handles to a resource. They are a typical approach.

Utilizing reference counting pointers reduces misuses and errors in mem-
ory management of the software. They can be implemented using template
programming. Operator overloading enables a syntax similar to program-
ming with native pointers.

The software libraries described in chapter 4 and chapter 5 are based on a
memory core library, MemCore, providing strong and weak reference counting
pointers with the following features, see [6]:

1. reference counting: keep objects alive exactly as long as at least one
pointer refers to it

2. weak and strong pointers:allow back links and circular references

3. support of the up casting operation, conversion from child class to base
class (going “up” in the class hierarchy), like it is always possible with
native C++ pointers
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4. support of the downcasting operation: conversion from base class to
child class (going “down” in the class hierarchy), possibly revealing
a NULL pointer, similar to the dynamic cast<> pointer conversion in
C++

5. constant objects

6. multiple inheritance

7. thread-safety

A strong pointer will keep an object alive, whereas a weak pointer only
recognizes the death of an object. Strong and weak pointers are complement-
ing concepts and allow circular references. In this implementation, a strong
pointer is a weak pointer via inheritance relationships.

Any class can be enabled for reference counting by deriving from the
ReferenceBase class:

1 template<class T>
2 class MyClass : public MemCore : : ReferenceBase<MyClass<T> >
3 {
4 RefPtr<HerClass<T> > element ;
5

6 public :
7 MyClass ( RefPtr<HerClass<T> >& elementP )
8 : e lement ( elementP ) {}
9

10 /* . . . */
11

12 } ;
13

14 /* . . . */
15 RefPtr< HerClass<int> > herFoo = new HerClass<int >() ;
16

17 RefPtr< MyClass<int> > myFoo = new MyClass<int>( herFoo ) ;

A reference pointer object can now be created by using the template
RefPtr<> and the standard new, line 15 and line 17. Objects are efficiently
passed by a reference of a reference pointer, line 7 and line 17.

A RefPtr<> can be checked to be valid similar to a native C++ pointer.
This concept is used throughout the implemented software for error checking:

1 RefPtr< MyClass<int> > f oo = someContainer−>getData ( ) ;
2

3 i f ( ! f oo )
4 {
5 puts ( ” e r r o r ” ) ;
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6 return ;
7 }



Chapter 4

Modeling of Scientific Data

Computational methods are used more and more in the scientific world. Huge
amounts of data are produced every day. But as the number of applications
increases also the diversity of data handling increases and often not much
care is taken about data exchange-ability.

Modern research often forces to split huge tasks over several researchers or
research groups that have to collaborate. Data diversity can be a big burden
to overcome and many hours are spent on data conversion and handling
instead of concentrating on real research problems.

However, there exist concepts that can be used to model any kind of
scientific data transparently, efficiently and sustainable. Using and applying
such a data model is of great advantage especially in collaborative research
projects.

Already in 1989 David M. Butler introduced and suggested the concept
fiber bundles to describe data in a unified way, see[19] and [18].

Inspired by this idea Werner Benger developed the Fiber Bundle library
for his needs in visualizations stemming from numerical relativity [6]. Data in
numerical relativity tend to be quite complex since they often are formulated
in different coordinate systems on non trivial manifolds such as adaptively re-
fining meshes. Data sets tend to be huge, with several hundreds of Terabytes
of data produced. Numerical relativity is located on the edge of possibilities
in super-computing technologies.

With this main application in mind he included information such as
topology and coordinate representation in a strong and flexible systematic
approach applicable to likely all data occurring in computational scientific
domains.

36
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4.1 Fiber Bundle Data Model

The Fiber Bundle is based on Butler’s fiber bundle concept. Here, data is
separated in base space and in fiber spaces where the base space describes
the topological and geometrical data and the fibers the data on the geometry.
The data model captures all the semantics of the data. A vector field is not
just a collection of floating point numbers. Rather, it is an array of tangential
vectors in a coordinate system representation on a certain topology of a
geometrical object at a certain time. All this information is systematically
organized to handle and also store data. The meta information is captured
in a hierarchical layer approach. The actual data sets are hosted in so called
data fields, that represent the fibers of the bundle.

The two main goals of the Fiber Bundle approach are [6]:

� abstract the geometrical description of spatial objects from their nu-
merical representation in a specific coordinate

� abstract the physical computation domain from its underlying dis-
cretization scheme

This allows to formulate algorithms independent of the underlying grid
objects. The line integration algorithms I developed in this thesis are basi-
cally formulated grid independently by utilizing the LocalFromWorldPoint

class, see chapter 5.4. Still some algorithms cannot be formulated in such a
way.

Also a mapping to the file format F5 exists that is utilized by the Fiber
Bundle library for reading and writing. An isolated C-library provides this
functionality. The file format is based on HDF51 which is developed and
supported by the NCSA2 HDF5 group for over a decade now. It is stemming
from high performance scientific computing applications and addresses many
needs regarding fast and parallel data access or sustainable archiving, see
[33]. For more in depth information about the Fiber Bundle data model, the
library and the F5 file format, see [6], [49] and [8].

I omitted the mathematical definitions of fiber bundles here because they
might discourage and confuse. The concept itself is simple and straightfor-
ward. For the sake of completeness, I added the mathematical definitions to
the appendix, see appendix B.

1Hierarchical Data Format Version 5
2National Center for Supercomputing Applications
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Fiber Bundle CFD Simulation Data

Time Slice T=0.0

Grid Computational Grid

Topology Vertices

Coordinates Cartesian3D

Field Positions,   Vectors,   Scalars

Figure 4.1: Left: The hierarchical layers of the Fiber Bunlde data model.
Each layer can be compared to a directory in a file system, a container hosting
several objects of the next hierarchy layer. Layers bordered by dashed lines
are hidden to an application user completely and to a developer as far as
as possible. Right: A simple example of a CFD data set. The positions of
the computational grid are stored as a vertex field in Cartesian Coordinates.
Two data fields (Vectors and Scalars) are stored on a grid object at time
T = 0.

4.2 The Hierarchy Levels

To store data and its properties the Fiber Bundle library uses a hierarchical
organization. Each layer adds information to the numerical data that is
hosted on the end leaves, the data fields.

Figure 4.1 illustrates the hierarchical layers covering information regard-
ing time, grid objects or manifolds, topology and refinement, coordinate rep-
resentation and numerical data. The layers one mainly operates with are
Fiber Slice, Fiber Grid and Fiber Field.

4.2.1 Fiber Bundle

Usually data can be separated in a spatial domain Σ and in one oriented
time coordinate R. The whole data space is thus covered by the Cartesian
product of (Σ× R).

One time slice is a collection of all data related to one certain in-
stance of time. The Bundle provides a map, implemented using a STL
std::map<double, RefPtr<Slice>>, from a scalar time value to a time slice
object. In the Fiber Bundle library a slice can be retrieved, for example, by
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Figure 4.2: The collection of all time slices form a Fiber Bundle.

using the () operator of the Bundle class:

RefPtr<Slice> mySlice = myBundle( 0.553 );

Also, the [] operator can be used for access. In that case a new time slice
will be created automatically when no slice at the given time is found.

The Bundle class provides a number of functions and convenient func-
tions, for example, to retrieve the next and previous Fiber Slice or to extract
a Fiber Grid object of the next or previous time slice.

In contrast to common praxis in many simulations floating point values
are used to identify time slices instead of integer time steps. Float values
capture time in a more natural way and allow to store, for example, datasets
stemming from different time discretization in one bundle. This would be
difficult if datasets are accessed by integer time steps but having different
absolute time resolutions.

Generally, a slice does not need be time but could be a different float-
ing point parameter describing something else. Even slicing using multiple
parameters could be of interest, but is not yet supported by the library.

Figure 4.2 illustrates a physical space parameterized by a oriented time
value. All time slices are collected in one bundle.

4.2.2 Fiber Slice

A Slice is a collection of geometrical objects called Fiber Grid objects. They
are identified by a name. Thus, a slice provides a map of a string to a grid
object.

Again, the () or [] operator is utilized to extract or create a grid object:

RefPtr<Grid> myGrid = mySlice("myName");

The slice provides an GridIterator that can be used to iterate over all or
a subset of grid objects of a time slice. To utilize an iterator a GridIterator
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T=0.0

Figure 4.3: A Fiber Slice at T = 0.0 hosting four Fiber Grids of different
kind. Each grid is identified by a unique name.

has to be derived, its apply function has to be implemented and then itera-
tion is invoked by, for example:

mySlice.iterate(myGridIterator);

Figure 4.3 illustrates the Fiber Slice container.

4.2.3 Fiber Grid

A Fiber Grid object represents geometrical object, a discretized manifold. All
data describing such an object form a grid object. Typically, it will contain
vertex positions, vertex connectivity and data sets defined, for example, at
vertex positions, on edges, on faces or on cell volumes.

Figure 4.3 shows four different kinds of geometric objects: a general man-
ifold, a 3D uniform grid, a collection of lines and a particle cloud.

To schematically distinguish between such different object types the Fiber
Grid provides a map to Skeletons describing the topology of one grid object
(the next layer in the hierarchy).

The grid object is equipped with certain most frequently needed topology
objects, such as, Vertices, Connectivity, Edges and Faces. Additional
skeletons can be added.

Though, one can access the topology object via the grid object this is
usually not necessary and is hidden to the end user of the library. In fact
Fiber Grid objects are used to access and retrieve data fields directly by their
names, for example:

RefPtr<Field> VectorField = myGrid("Velocity");

Convenience functions are provided the get and create Cartesian Repre-
sentations or to directly extract Cartesian vertices of the grid:

RefPtr< Field > VertexField = myGrid.getCartesianPositions();
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Figure 4.4: Dimensionality of some example topological objects. From left
to right: Vertex: 0, Edge: 1, Quad-Face: 2, Cubic-Cell: 3.

4.2.4 Fiber Topology

The object describing the topology of the data is called a Skeleton in the
Fiber Bundle library. It holds the neighborhood information and it is char-
acterized by three integer numbers: the dimensionality, the index depth
and the refinement level.

The neighborhood information is in the most general case stored as a list
of neighbors of one spatial elements to the others as a list of indices. In many
cases the neighborhood can be expressed procedurally and no explicit data
has to be stored, as, for example, neighbors of vertices of a uniform grid.

The dimensionality describes the dimensions that the data, stored in the
data fields, is associated with. A dimensionality of 0 represents a vertex, 1
represents a line or an egde, 2 a surface or polygon, 3 a volume or cell and
4 a hyper-volume, and so forth. Figure 4.4 illustrates the dimensionality up
to 3.

If, for example, scalar values are stored on 3D cell volumes the scalar
data field would be nested in a Skeleton of dimensionality 3. The data field
describing the vertices of the cell corners would be stored in a Skeleton of
dimensionality 0.

Index depth describes how many “dereferencing” or “lookup” operations
are necessary to get “down” to a vertex of the geometrical object. An edge,
for example, can be defined as a pair of two vertices (or pair of indices of
vertices), resulting in an index depth on 1. A path can be defined based on
these edges. Now, to get “down” to the vertex level one has to first lookup
the edge and then lookup the vertex. Thus, a path, defined via edges has an
index depth of 2. The following table illustrates several possible values for
skeleton characteristics by example (taken from [6]):
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Figure 4.5: Uniform grid having different refinement levels.

Topological entity Index Depth Dimensionality
Vertex 0 0

Edge 1 1
Face 1 2

3D-Cell 1 3
Collection of Vertices 1 0

Path of Edges 2 1
Surface of Faces 2 2

3D-Cell Complex 2 3
Set of Cell Complexes 3 3

Another property is also defines the skeleton: the refinement level.
Figure 4.5 illustrates an uniform grid of three different refinement levels.
Index depth and dimensionality, of course, are not changing on different
refinement levels.

The Fiber Bundle library provides a convenience function for the creation
of vertex topologies, since they are needed for all grid objects, on the grid
layer:

Skeleton mySkeleton = myGrid.makeVertices(Dims);

4.2.5 Fiber Representation

The next layer describes the coordinate representation of the data. It either
describes the coordinate system that was used to represent some vertices or
field data, or it specifies a relative representation, for example, when faces
are represented as vertices (or vertex indices).

The representation holds a set of Fiber Field objects which finally store
the actual numerical data. Fields are accessed by the FieldID which is
basically a name. One special field, the “Positions” field, is always included in
a representation. This field defines the locations stored in this representation.
If other fields are stored as well, these represent the data on the “Positions”.
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Figure 4.6: Examples of different coordinate systems that could be used to
describe some 3D data. In terms of the Fiber Bundle library these are called
Charts. From left to right: Cartesian3D, Cylindrical3D, Spherical3D.

The Fiber Bundle library allows to specify “Positions” explicitly by
specifying coordinates for each spatial element (e.g. for curvilinear grids), or
procedurally (e.g. for uniform grids). A uniform grid can be fully described
by the location of the origin, the number of vertices in each dimension and
a distance between vertices in each dimension.

According to the fiber bundle theory, the Fiber Grid objects to-
gether with the “Positions” fields represent the base space of the
manifold. The additional data fields represent the fibers on that
base space.

4.2.6 Fiber Field

A Fiber Field finally is the hierarchical layer storing the numerical data which
is stored in data arrays. Thus, the field provides a map from an index to a
data element.

All fields in one representation share the same index space which is based
on the “Positions” field. Thus, if one representation holds the “Positions”
field, a scalar field and a vector field, the same index is used to access the
position, the scalar value at that position and the vector at that position
used on the three different fields.

Having the actual numerical data organized in such a compact array
form is very practical in visualization applications. Modern architecture of
graphics hardware requires compact arrays for the description of geometry
and texture data. Fiber Field arrays often can be loaded directly onto the
graphics hardware without memory reorganization.
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Figure 4.7: Final data storage in a Fiber Field as data array. One or more
dimensional arrays can be used.

However, instead of hosting one data array a fields also can be fragmented.
Such fragmentation allows, for example, to model multi-block data. Data
arrays are contained in fragments instead of being stored in the Fiber Field
directly. Fragments are then accessed by fragment IDs which basically are
names.

The Fiber Field also provides a fragment iterator. When no fragments
are present the call back operations executed with a field iterator will be
applied to the data in the un-fragmented field. Thus, when implementing an
iterator, the simpler case of an un-fragmented field is automatically covered.

To extract a data array of a field the getData function is called. The
Fiber Bundle library uses some template base classes to handle arrays. They
provide compile time range checking and a common interface for access. Ac-
cess via the base class directly is possible but should be avoided since it is
slow.

In my work I mostly use MultiArrays3 of one or three dimensions to
access field arrays. Here follow two short examples showing data array ex-
traction from a Fiber Field. Some error checking is indicated:

Listing 4.1: Extracting a one dimensional MultiArray of cartesian positions
of a Fiber Field.

1 RefPtr<Field> P o s i t i o n s = BaseGrid−>g e t C a r t e s i a n P o s i t i o n s ( ) ;
2 i f ( ! P o s i t i o n s ) { /* some error hand l ing */ }
3

4 RefPtr<MemBase> mBase = P o s i t i o n s F i e l d−>getData ( ) ;
5

6 RefPtr<MemArray<1, point> >V e r t i c e s = mBase ;
7 i f ( ! V e r t i c e s )
8 {

3derived from MemArray
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9 puts ( ” Error : MemArray<1, point> i s incompat ib le ! Type i s : ” ) ;
10 mBase . speak ( ”some text ” ) ;
11 return ;
12 }
13

14 MultiArray<1, point>&BaseCrds = *BaseVert i ce s ;
15

16 MultiIndex<1> mi ;
17 mi=0;
18

19 point myPoint = BaseCrds [ mi ] ;

First the field is extracted from the underlying grid object by using a conve-
nience function, line 1. Then data is retrieved into a array class MemArray

of dimension 1 and type of points. When no field or no data can be re-
trieved the according reference pointer is null and can be used for error
checking. When the MemBase is retrieved first it can be used to get infor-
mation about the data object in case of an error, lne10. Finally, a reference
of MultiArray is instantiated downcasting the dereferenced MemArray, line
14. The MultiArray can be accessed using a one dimensional MultiIndex
efficiently.

Here follows an example that shows the extraction of a three dimensional
vector array from a fragmented field by fragment name. Error checking is
omitted:

Listing 4.2: Extracting a three dimensional MultiArray of vectors of one
fragment of a Fiber Field.

1 RefPtr<Field> VecField = F i e l d S e l e c t i o n . g e t F i e l d ( ) ;
2

3 RefPtr<FragmentID> FragID = new FragmentID ( FragName ) ;
4

5 RefPtr<MemArray<3,tvector>> VData =
6 VecField−>getCreator ( FragID)−>c r e a t e ( ) ;
7

8 MultiArray<3, tvector>&VCrds = *VData ;
9

10 MultiIndex<3> mi ;
11 mi=0 ,0 ,0 ;
12

13 tvector myVector = VCrds [ mi ] ;

Here, the field is retrieved from a FieldSelector, see chapter 4.3. The
three dimensional MemArray of vectors is initialized by a creator of the frag-
ment, line 5. Again, a MultiArray is used for the direct array access. The
MultiIndex is also three dimensional in this case.
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The next example illustrated how to utilize an iterator over fragments.
The iteration over grids for example, follows the same concept:

Listing 4.3: Applying an iterator over fragments of a Fiber Bundle Field

1 struct MyIterator : Field : : I t e r a t o r
2 {
3 typedef DirectProductMemArray<point> ProcArray t ;
4 RefPtr<Field> myItFie ld ;
5

6 /* s t o r e something */
7

8 MyIterator : : Myiterator ( const RefPtr<Field>&myItFieldP )
9 : myField ( myItFieldP )

10 {}
11

12 o v e r r i d e bool apply ( const RefPtr<FragmentID>&f ,
13 const MemCore : : StrongPtr<Fiber : : CreativeArrayBase>&DC )
14 {
15 RefPtr<ProcArray t> PCrds ;
16 PCrds = Coords−>getData ( f ) ;
17

18 /* do something */
19 }
20 } ;
21

22 MyItertor doSomething ( myField ) ;
23

24 myField−>i t e r a t e ( doSomething ) ;

The MyIterator is applied on the fragments of myField. The apply function
of the Iterator base class is implemented providing the current FragmentID.
In the apply function the actual array is retrieved using the Field’s getData
function with the FragmentID as a parameter, line 16. This time not a
MultiArray is retrieved but a DirectProductMemArray, which is used to
describe vertex data on uniform grids procedurally.4

4.3 Simplified Access via Selectors

The organization of the Fiber Bundle hierarchy basically provides mappings
in one direction. It is straightforward to extract a field from a given grid.
But the other way around would require a search in the bundle to find the
according grid to a field.

4A uniform grid can be described by its origin, the axis distances between vertices and
its size.
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In the Vish visualization environment, see chapter 5, that heavily uti-
lized the Fiber Bundle library sometimes fiber accesses were difficult. Se-
lector classes were introduced for convenience that would store much more
related information. Two selector classes are available: a GridSelector and
a FieldSelector, which is derived from the former.

The GridSelector class holds the name of the selected grid and a handle
to the bundle it is hosted in. It provides functions to extract grid objects
that are closest to a given time and functions that extract grid objects next
or previous to a given time. Having a GridSelector available the grid at a
current time t can be extracted via:

RefPtr<Grid> myGrid = myGridSelector->findMostRecentGrid( t );

The next or previous grid can be extracted by:

RefPtr<Grid> myGrid= myGridSelector->findNext( t );

RefPtr<Grid> myGrid= myGridSelector->findPrev( t );

Since the FieldSelector is derived from GridSelector it pro-
vides the functionality described above and additionally allows to ex-
tract the selected field, the grid and the time slice carrying the field:

RefPtr<Field> myField = myFieldSelector->getField()

RefPtr<Grid> myGrid = myFieldSelector->getGrid()

RefPtr<Slice> mySlice = myFieldSelector->getSlice()

Another convenience function returns the “Positions” field according
to the selected data field, if they are given in Cartesian representation:

RefPtr<Field> myPositions = getCartesianPositions();

More convenience functions are available and can be found in the docu-
mentation, see chapter 5.1.2.

The selector classes are now used as data handles (for example as mod-
ule parameters) in the Vish environment and simplify the fiber data access
tremendously.

4.4 Data Examples

Three examples of how data is laid out in the Fiber Bundle model are shown
in this section. The examples describe most of the data I used in the thesis:

� a uniform grid hosting vector, scalar or tensor field data
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Figure 4.8: Structure of Fiber Bundle layers of the uniform grid hosting a
vector field for velocity, as it is used to describe the Couette flow field in
chapter 7.1. Here, the light red color of the “Velocity” data field indicates
the fiber on the manifold. The two data fields (red) are contained in the
Cartesion3D representation.

� a curvilinear multi-block grid hosting vector and scalar data

� a grid that describes lines with additional data stored on them

4.4.1 Uniform, procedural

Many data are provided on a uniform hexahedral procedural grid formulated
in Cartesian coordinates. The 3D vector field of the Couette flow application
and the metric tensor fields are created by Analytic Creators that sample
an uniform grid based on some formula. Data is sampled on demand by
the creator when it is requested. The diffusion tensor field used in the MRI
application is read from numerical data, but is also hosted by a uniform
procedural grid, see chapter 7.

Figure 4.8 shows the hierarchical layout of the vector field used in the
Couette flow application, see chapter 7.1. It provides a vector field on a
uniform grid. The original stationary flow is scaled over time, thus, several
time slices are stored in the bundle. In this application all field data is
computed on demand, stored and kept in the bundle, just before data is
accessed the first time.

The uniform grid (the base space) itself does not change over time. The
Fiber Bundle library will just reuse the same grid object for all time steps in
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Figure 4.9: Structure of Fiber Bundle layers of the curvilinear multi-block
grid hosting a vector field for velocity and a scalar field for pressure, as it
is used to describe data for the stirtank in chapter 7.2. Again, the light red
colors illustrate the fibers on the manifold sharing the index space of the
“Position”.

that case, though this is not visible in the data layout. The only component
that is changing over time is the vector field describing velocity (the fiber).

The data layout itself does not differ between grids given procedurally or
explicitly. The difference is located in the array data structure used to vertex
“Positions” data. As described above a DirectProductMemArray is used to
store procedural coordinates. The coordinate array of a procedural uniform
grid can be extracted using the getData() function of a field, for example:

1 typedef DirectProductMemArray<point> ProcArray t ;
2 RefPtr<ProcArray t> ProcCrds = myPosit ionFie ld−>getData ( ) ;

4.4.2 Multiblock, Curvilinear

The data from the stir tank application, see chapter 7.2, is given in curvilinear
multi-block data. Coordinates of the grid object are given explicitly and are
separated over multiple blocks of coordinates. The coordinates are given on
a hexahedral grid.

The Fiber Bundle data model captures the multi-block organization by
storing its field as fragmented fields. Each fragment refers to one multi-block.

Figure 4.9 illustrated the hierarchical layout. The differences to the uni-
form grid example are, that data fields are stored using MultiArrays, for
explicit coordinates, and that data fields are fragmented. The data set holds
a vector field for velocity and a scalar field for pressure, stored as fibers on
the grid object. Besides the index space now also the space of fragment IDs
is shared among the fibers hosted on the vertex “Positions”.

Fields must be accessed using fragment IDs or via fragment iterators as
described above.
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Figure 4.10: Structure of Fiber Bundle layers of the grid describing computed
integral lines as they are used throughout all applications chapters. The light
red colors illustrate the fibers on the manifold sharing the index space of the
”Position”. Here, data fields are stored on the vertices of the lines. The edges
of the lines are stored in its own topology using a relative representation on
the Vertices, thus, using vertex indices to describe edges. An additional
topology SourceFragments stores multi-block IDs relatively to the vertices.
The fiber field TangentialVectorFieldName is an alias to Directions used
as convention for rendering modules in Vish.

4.4.3 Lines

The lines stemming from the integration, see chapter 6, are also stored using
the Fiber Bundle data model.

This example shows the application of relative representations. First,
the lines store information “what make them lines”. Vertex positions are
stored in the topology Vertices. Now, the LineEdge topology (index
depth 1, dimensionality 1) defines edges by using the relative representation
EdgesAsVertices. Thus, vertex indices are used to define edges. Tangen-
tial direction vectors are computed during integration and are stored in the
data field Directions. To provide compatibility to line grids in the Vish
environment an alias TangentialVectorFieldName is provided, as well.

Next, data related to the data field that is being integrated is stored.
The data field value at the vertex position is stored in the fiber FieldData.
In case of streamlines this is the velocity vector and in case of geodesics
this is the metric tensor. A norm of this object is stored in the scalar field
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Magnitude.
Finally, data that will speed up sampling of any other field on the line

grid is stored, i.e. interpolation weights. This information includes the local
index coordinates of a vertex, see chapter 5.4, and the IDs of the multi-
block, a vertex is contained in. Local coordinates are stored as a fiber in
the vertex topology and fragments (or better fragment IDs) are stored on
a different topology (index depth 1 and dimensionality 3) using a relative
representation on the vertices.

Example code illustrating data storage using the Fiber Bundle library is
given in chapter 6.2.



Chapter 5

Vish - The Vis(h)ualization
Environment

Vish is the visualization application of choice for this thesis. It it a very mod-
ular, flexible and fast framework especially build for scientific visualization
created mainly by Werner Benger. It provides the programmer with a lot
of functionality addressing problems especially faced when doing scientific
visualization, such as, handling large data sets and memory management.
It provides an automatically generated GUI, 3D rendering with camera and
time navigation, hierarchical caching, mathematical functionality and a num-
ber of standard modules for analyzing datasets.

It is meant to enable the developer to focus on visualization algorithms
and not spending his and her time on basic tasks like GUI programming or
reading and writing data files. This comes, of course, with the cost of learning
and understanding some concepts of the visualization environment. It follows
a systematic approach using strong theoretical concepts in the background.
This helps to create overall more reusable code. These concepts are:

� Topology

� Differential Geometry

� Geometric Algebra

This chapter should help to overcome this hurdle and will give a quick
start. Since most of this information is available already on some web docu-
mentation or tutorial examples it is kept short and will give some references
to further reading. While basics are described here shortly, more in-depth
examples will be explained by describing parts of the source code written for
computing the geodesics in the following in chapter 6. Also, see [11] for more
descriptions of concepts behind Vish.

52
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Figure 5.1: The GUI of Vish. It consists of a 3D graphics view port(right), a
time line(bottom right) and an area where parameters can be controlled(left),
the network frame.

5.1 Development Quick Start

5.1.1 Availability and Installation

The source code of Vish is available under the light++ license, see [7], and
is free for personal and academic use via SVN1 from http://vish.origo.

ethz.ch.
A windows executable to automatically install a windows build of the

application and tools needed for development can also be found at [21]. Here,
several information and links are collected, including: mailing list access, the
Vish and the Fiber-Vish API2 created with doxygen3, a small programming
tutorial and a gallery.

The installer, however, does not include the Vish source, but automat-
ically downloads tools and libraries needed for development. Thus, a SVN
checkout is still required afterwards.

For Linux64 bit a self extracting binary is available. For development
also a SVN checkout is required. For usage and development under Mac OS
more work has to be done manually.

1(Sub)Version Control
2Application Programming Interface
3A tool for creating documentation by parsing and analyzing the source code directly,

see [57]

http://vish.origo.ethz.ch
http://vish.origo.ethz.ch
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Dependencies on external libraries are kept as minimal as possible. As of
now, the following external libraries are required:

� QT, a cross platform GUI library, see [45]

� GNU Bison and Flex, a GNU parser generator and lexer, from [30]

� GNU FreeType, a GNU font library

� HDF5, a hierarchical file format, see [33]

Earlier the HDF5 file format library had to be downloaded manually but it
was added to the Vish SVN repository, lately.

To get access to the SVN one must join the vish group and, thus, must
be added to the group to get full permissions.

Installation instructions can be found at origao, see [64], under
development. When using windows it is best to install using the installer
provided at [21] and to install all libraries or programs into the standard di-
rectory that is suggested by each installer. Otherwise it might get necessary
to modify some Makefiles during compilation.

5.1.2 Source Code Organization and Naming Conven-
tions

Vish follows an own naming convention through directory, file and class
names. The Vish kernel is called the ocean which represents the environment
inhabiting classified beings.

The ocean has interfaces to four big code areas which are connected to
the kernel only:

� GUI

� Script

� Graphics

� Data I/O

The preferred components are the Qt library for the GUI, a simple script
interpreter, OpenGL for Graphics and HDF5 for Data I/O. They can be
exchanged by using the provided interfaces.

The more high level the code in the kernel gets the higher level
is the classification of the being living in the ocean. Starting from
the $VISH/ocean/plankton library and becoming more complex via e.g.
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$VISH/ocean/shrimp to $VISH/ocean/eagle, which for example provides
mathematical, algebraic classes. Typically a being consists of several API
source files. If there are concrete Vish modules, section 5.2, implemented
based on the contained source files the directory will contain a directory
called egg hosting these implementations.

A complex being is the $VISH/fish/fiber library. This is the Fiber Bun-
dle library as described in chapter 4, which is independent. All source code
dependent on the $VISH/ocean and the $VISH/fish/fiber library are gath-
ered in the $VISH/fish/lakeview directory. Here, almost all Vish Modules
can be found.

When developing a new Vish Module without extending the Vish kernel
this most likely the directory where the source code will be placed.

Both, the $VISH/ocean and the $VISH/fish library use the
$VISH/memcore library which provides basis classes for memory manage-
ment, such as, template classes for reference pointers. Native pointers are
avoided in source code and strong and weak reference pointers are preferred,
section 3.3. This reduces programming errors due to allocation and freeing
of memory.

The Vish coding style usually intends that code is separated in header
(*.hpp) and implementation(*.cpp) files. Usually every class is placed in
an own file which has the same name as the class. For example, an class
implementation called RandomPointDistribution is placed in the file or files
RandomPointsDistribution.cpp and/or RandomPointDistribution.hpp.

Classes or source files are kept short. In the best case, files will have less
than 300 lines of code. Up to 800 is considered as acceptable but having more
lines of code should give the programmer a hint for refactoring and clearer
organization the code. Maybe some functionality can be gathered and made
better reusable in another header file.

Experimental test or source code should be placed in
$VISH/modules/examples where some examples of implementations of
different kinds can be found.

While working into the software environments I created a quick start
tutorial which starts from very a simple example. More complex source code
examples demonstrate how to use OpenGL and the Fiber Bundle library.
The tutorial can be found in the $VISH/tutorial directory.

All documentation is located in $VISH/doc but has to be created manu-
ally. There are different parts of the documentation that have to be created
each. For creation of the Vish documentation invoke make doc in the $VISH/
parent directory. For creation of the Fiber Vish (Fish) documentation invoke
make doc in the $VISH/fish directory. Make doc in the $VISH/tutorial di-
rectory creates the documentation for the tutorial. These documentation can



CHAPTER 5. VISH - THE VIS(H)UALIZATION ENVIRONMENT 56

also be found online at [21].
The directory $VISH/data is used to place f5 data files, see [49], or vis

script files, section 5.2.4

5.1.3 Make Files and Compilation

The Vish project uses a make file system. The basis make file configurations
for different platforms, like Linux 64, Windows 32, etc. are located in the
$VISH/make directory. Internally the uname command is used to differentiate
between platforms and the returned string of the command is concatenated
to the arch- prefix.

Each directory containing source files contains a file Makefile specifying
the following:
The name of the dynamically linkable object is defined by, for exam-
ple, VISH=fishcephalus. During compilation a file fishcephalus.dll or
fishcephalus.so is created and placed in the $VISH/bin/$arch directory
containing the compiled code of the source of this directory.
Script files can be copied to the $VISH/data directory by specifying VIS=

followed by a list of *.vis files separated by a whitespace.
All libraries that are necessary for linking have to be specified by LIBS= fol-
lowed by strings ’-l’ concatenated with the name of the library separated by
a whitespace.
If OBJS= is specified the following list of .cpp files are used for compilation.
If not specified all .cpp files in the directory are compiled.
The Makefile ends with include $(VPATH)../GNUmakefile.rules. For a
more detailed description of the make file system, see the documentation
located at $VISH/make/doc. A typical Makefile is shown in listing 5.1.

Listing 5.1: Typical Vish Makefile. The example shows a simplified version
of the Makefile found in the $VISH/fish/lakeview/cephalus directory

1 VISH=f i s h c e p h a l u s
2

3 VIS=GridSubtractor . v i s GridAdder . v i s GridConvolver . v i s . . .
4

5 LIBS=−lbundle − l f i b e r b a s e o p − l f i b e r o p −l shr imp −l p lankton
6 $ (FIBERLIBS) −lmemcore −lm − l f i s h b o n e $ (OCEAN)
7

8 i n c lude $ (VPATH) . . / GNUmakefile . r u l e s

Compilation of the source is done using a gcc4 compiler in the according
system by invoking make in the parent Vish directory $VISH/. Parts of the

4Version 3.4.2 or newer.
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Vish environment can be compiled by invoking make in the appropriate sub-
directory or by providing the directory name after make -C.
To compile in debug mode use make Make CFG=Debug and to compile opti-
mized use make MAKE CFG=Optimize.
Make libclean deletes all precompiled object files located in the $VISH/lib

directory and make clean does a complete cleanup in the current directory.

5.2 Scene Network

To solve an entire visualization task Vish breaks this task into small pieces of
work. An entity processing a small piece of task is called a module. Modules
are connected by a directed graph or network. The graph can also allows
cycles. Information is passed in two steps through the graph. A controls flow
decides what has to be updated and the data flow transports the information.

It is a common approach to break tasks into such building blocks in
graphic applications. Atomic tasks can be combined in many different ways
to solve complex tasks making this a very flexible approach.

Famous examples of graphics applications that successfully use a network
scheme are Autodesk Maya (a professional 3D application used in movie pro-
ductions, see [3]), Eyon Fusion (a nonlinear compositing application used in
movie productions, see [27]), Avizo, the former Amira (a scientific visual-
ization toolkit, see [62]) and OpenDX (a scientific visualization toolkit, see
[46]).

However, there are different schemes of how data is flowing through the
network or how recomputing of modules is controlled. Vish uses a data pull
scheme. Thus, the end or sink nodes of the network, which typically are
modules responsible for rendering, notify the connected upstream modules
that they need to provide up to date data. This request is forwarded to
the next upstream connected modules and finally all involved modules are
updated or recomputed from source to sink.

So, sink modules pull from the sources and updates are only done where
they are really needed. Maya, for example, uses a similar technique, by
first flagging necessary updates starting from the sink modules, see [55]. In
contrast, Avizo uses a push scheme where data sources push the data through
to the sink nodes.

The following section explains how the existing Vish network capabilities
can be extended by introducing new modules and new data types for the
data transport. It also introduces data access using the Fiber Bundle library
and describes how rendering is done. Finally, the script language to store
networks in text files is presented.
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Figure 5.2: Example of a module network shown in the network frame of
Vish’s GUI. Modules can be created by the user via a context menu showing
a hierarchical list of all modules which appears when clicking on an empty
space in the network frame, see figure 5.1. When doing a right click on
an existing module a context menu appears containing modules that have
compatible input parameters to the output parameter of the right clicked
module. A created module then is automatically connected.

5.2.1 Modules

Modules are the building block of the Vish network. They are derived
from the base class VObject and have to overload the function bool

update(VRequest&R, double precision). The module usually is equipped
with input and output parameters. When a module is requested to update5

it executes the update function and typically recomputes the output param-
eters dependent on the input parameters.

An input parameter can be added by declaring the template class
TypedSlot< ParameterType > in the derived VObject. In the constructor
of the class the parameter is initialized and also properties for a parameter
can be set.

In the same way, an output can be added by declaring the template class
VOutput< ParameterType >. Initialization and configuration also is done in
the constructor.

Examples of supported parameter types are int, double, Enum,
Eagle::PhysicalSpace::point, Eagle::PhysicalSpace::tvector, Eagle
::PhysicalSpace::metric33, Eagle::rgba float t. Custom types can be
added, as described in section 5.2.2.

5An internal age parameter is used for that purpose.
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To ensure thread save behavior it is forbidden to store data in the module
by using a typical data type in the module class. Data is always dependent
on a context. So, also when accessing input and output parameters this is
always done via the context. The context is provided in the update function
via the VRequest&R object.

Listing 5.2 shows how to implement a simple Vish module. It has two
input and one output parameter of type int. In the update function the
output is computed dependent on the input doing a multiplication. So, the
module just multiplies two integer numbers and outputs its result.

Listing 5.2: Source code example of a simple Vish module. The
MultiPlyInt example class can also be found in the tutorial section at
/tutorial/basic/MultiplyInt.cpp

1 #include <ocean / plankton /VCreator . hpp>
2 #define o v e r r i d e
3

4 using namespace Wizt ;
5

6 class Mult ip ly Int : public VObject
7 {
8 TypedSlot<int> IntInParam ;
9 TypedSlot<int> M u l t i p l i e r ;

10 VOutput<int> IntOutParam ;
11

12 public :
13 Mult ip ly Int ( const string & name , int p ,
14 const RefPtr< VCreat ionPre ferences > & VP)
15 : VObject( name , p , VP )
16 , IntInParam ( this , ” i n t i n pu t ” , 0 )
17 , M u l t i p l i e r ( this , ” m u l t i p l i e r ” , 2 )
18 , IntOutParam ( s e l f ( ) , ” intoutput ” , 1 )
19 {
20 M u l t i p l i e r . s e tProper ty ( ”max” , 8 ) ;
21 }
22

23 o v e r r i d e bool update ( VRequest & R, double p r e c i s i o n )
24 {
25 int x = 0 ;
26 int m = 0 ;
27

28 IntInParam << R >> x ;
29 M u l t i p l i e r << R >> m;
30

31 x *= m;
32

33 IntOutParam << R << x ;
34
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Figure 5.3: Example of a module shown on different expert levels. When the
module is displayed in the GUI parameters with a high parameter value are
hidden. The expert level that should be shown can be increased by clicking
the + button in the header of the module. This is used to hide parameters
from the user that are not needed frequently. The expert level increases from
left to right.

35 return true ;
36 }
37 } ;
38

39 stat ic Ref< VCreator<Mult ip lyInt , AcceptList<int> > >
40 VMult ip lyIntCreator ( ” Tutor i a l / Mul t ip ly Int ” ,
41 ObjectQual i ty : :EXPERIMENTAL) ;
42

43 VISH DEFAULT INIT

The macro in line 2 is used to label function if they are overloading a pure
virtual function. This makes code better readable and understandable and
is used throughout the most parts of source code in the Vish environment.
Thus, the update function in line 23 is flagged since it is an overriding
function of VObject.

The module MultiplyInt is derived from VObject making it a Vish net-
work module. The module is equipped with one output and two input integer
parameters, line 8 to line 10.

The parameters of the constructor, line 13, are just handled to the super
class, see line 15. The TypedSlot< > parameters are initialized by using
the constructor syntax with the following parameters: this, a string speci-
fying the name of the parameter in the GUI and script, the initial value and
optionally a so called expert level.

The body of the constructor is used to set properties of parameters. Here,
a maximum value for the Multiplier parameter is set to 8, see line 21.
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Finally, the update function is overridden. To get the values of the input
into local types the context R has to be used. Line 29 and line 30 shows how
this is done using the << operator to read from the context in combination
with the >> operator to write to the local type. Now, the local types can be
used in computations, as in line 32.

The value of a local type is written to the output parameter in a similar
fashion by using the >> operator via the context R.

The module itself is ready for use now but a static VCreator object has
to be provided for Vish. It defines what types can be connected to the module
and specifies a name and place in the GUI context menu for the module
creation. The first template parameter defines the class that is created, the
second the a list of compatible input parameter types. The AcceptList< >

template can be nested when more than one type is required. The name of
the VCreator class is arbitrary but the parameter string is important and
specifies the name of the module in the creation context menu. It is also the
string used to create a module instance in the *.vis script language, section
5.2.4. The second parameter sets a category used to filter modules in the
GUI menu. Possible values are ObjectQuality: :RECOMMENDED, :MATURE,
:DEMO, :BETA, :EXPERIMENTAL, :TEMPORARY and :OUTDATED.

If necessary, data can be stored or cached in the module from one update

call to another by using a provided state object. To add such a state class a
nested state class has to be defined in the module class and a creator function
has to be overridden, see listing 5.3.

Listing 5.3: Adding a state class to remember data from previous update

calls.

1 class Mult ip ly Int : public VObject
2 , public StatusIndicator
3 {
4 /* . . . */
5 struct MyState : State
6 {
7 int remember value ;
8 } ;
9

10 o v e r r i d e RefPtr<State> newState ( ) const
11 {
12 return new MyState ( ) ;
13 }
14 /* . . . */
15 o v e r r i d e bool update ( VRequest & R, double p r e c i s i o n )
16 {
17 /* . . . */
18 RefPtr<MyState> s t a t e = myState (R) ;
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19

20 s ta te−>remember value = x ;
21

22 s e t S t a t u s I n f o (R, ”Computation done ! ” ) ;
23 /* . . . */
24 }
25 } ;

Now, MyState can be used to store data. The simplified example makes
no real sense here. It just shows the correct procedure to add and access data
via a state object. Also, other possibilities for caching data are provided,
section 5.3.

A number of super classes for multiple derivation are provided for
VObjects. Features such as printing text messages in the GUI can be added
by deriving from the StatusIndicator class, see listing 5.3. Now, the func-
tions setStatusError and setStatusInfo can be used in the update func-
tion for printing strings, see line 22.

5.2.2 Data Transport and Access

Creating new Parameter Types

New valid parameter types for the TypedSlot< > template can be defined.
Firstly, the new class type has to be defined and secondly new specialization
of the template class VValueTrait< > has to be provided of the new custom
type. The VValuetrait< > contains two functions that are used to convert
the custom type to and from string representations. Listing 5.4 shows a
simple example of enabling a type called myNewType.

The VValuetrait< > is a Type Trait and allows to equip any foreign
types with the required functions, section 3.1.

Listing 5.4: Example of adding a custom parameter type.

1 struct myNewType
2 {
3 myDataClass data ;
4 } ;
5

6 namespace Wizt
7 {
8 template <>
9 class VValueTrait< myNewType >

10 {
11 public :
12 stat ic bool setValueFromText ( myNewType & i ,
13 const string & s )
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14 {
15 return fa l se ;
16 }
17

18 stat ic string Text ( const myNewType & e )
19 {
20 std : : string s ( ”” ) ;
21 std : : stringstream tmp ;
22

23 tmp << e . data ;
24 s = tmp . s t r ( ) ;
25 }
26 return s ;
27 }
28 } ;
29 }//namespace Wizt

It is important to implement the Text function because this string rep-
resentation is used in the Vish network to decide whether parameter values
have changed or not. So this is important for achieving the correct update be-
havior of connected modules. Also, the string functions are used for loading
and saving *.vis scripts, section 5.2.4.

Fiber Bundle Data Access

Vish also provides ready to use parameter types and classes for accessing and
connecting data represented in the Fiber Bundle data model.

The module can be equipped with functionality to operate on a Fiber
Grid and/or Fiber Field by deriving from Fish<Grid> and/or FishField.
In that case, TypedSlot<Grid> and/or TypedSlot<Field> are inherited and
neither must be added to the class nor must be initialized in the constructor
of the module.

When equipping a module with such a Fiber Field or Fiber Grid it has
to be derived also from Fish<Slice> first.

Listing 5.5: Example of equipping a module with input slots for one Fiber
Grid and one Fiber Field. Note that all classes derived from the Fish<>

interface are initialized by one line of code.

1 class DataCrunch : virtual public VObject
2 , virtual public Fish< Slice >
3 , virtual public Fish< Grid >
4 , virtual public Fish< Field >
5 , public StatusIndicator
6 {
7 /* . . . */
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8 public :
9 DataCrunch ( const string & name , int p ,

10 const RefPtr< VCreat ionPre ferences > & VP)
11 : VObject( name , p , VP )
12 , Fish<VObject>(this )
13 /* . . . */
14

15 o v e r r i d e bool update ( VRequest&R, double p r e c i s i o n )
16 {
17 /* Example to ge t a Grid i n h e r i t e d from Fish<Grid> */
18 GridSelector GS1 ;
19 MyGrid << R >> GS1 ;
20

21 Fiber : : Bundle : : Gr id In f o t Grid1=findMostRecentGrid (GS1 ,R) ;
22

23 RefPtr<Grid> BaseGrid = Grid1 ;
24 i f ( ! BaseGrid )
25 {
26 puts ( ”DataCrunch : : update ( ) ERR, No parent g r id found” ) ;
27 return s e tS ta tu sEr ro r (R, ”No parent g r id found” ) ;
28 } ;
29

30 /* Example to ge t a F i e l d i n h e r i t e d from Fish<Fie ld> */
31 FieldSelector FS ;
32 MyField << R >> FS ;
33

34 std : : string FieldName = FS . getFieldName ( ) ;
35 RefPtr<Representation> vrep ;
36 RefPtr<Field> WorkField ;
37

38 vrep = SomeGrid−>ge tCar te s i anRepre senta t i on ( ) ;
39 WorkField = (* vrep ) ( FieldName ) ;
40 i f ( ! WorkField )
41 {
42 puts ( ”DataCrunch : : update ( ) : ERROR, No f i e l d found” ) ;
43 return s e tS ta tu sEr ro r (R, ”No f i e l d found” ) ;
44 }
45 /* . . . */
46 }
47 } ;

Additional Fiber Field or Fiber Grid input parameters can be added by
using TypedSlot<Field> or TypedSlot<Grid>. Similarly, output parameters
can be added by VOutput<Field> or VOutput<Grid>. The initialization in
the constructor then has to be done explicitly, for example:
, mySecondInputGrid(this, "another grid", GridSelector())

, mySecondInputField(this, "another field", FieldSelector())

, myOutputGrid(self(), "outgrid", GridSelector())
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, myOutputField(self(), "outfield", FieldSelector())

Inside the update function Fiber Grids and Fieber Fields can be accessed
via the Selector classes, section 4.3.

Line 18 to line 28 in listing 5.5 shows how the get a reference pointer of
a Fiber Grid object. First, a GridSelector is created and fed by the input
TypedSlot<Grid> MyGrid. The selector is used to get the grid of the most
recent Fiber Slice by using the findMostRecentGrid function providing
the actual context. After assigning to the reference pointer of the Fiber Grid
it is checked if it is a valid pointer and the update function returns in case
of an error.

Line 31 to line 44 in listing 5.5 shows the extraction of a Fiber Field
reference pointer. Similar to the grid process it uses a FieldSelector class.
Note, that FieldSelector is derived from GridSelector and can also be
used to extract a handle to the Fiber Grid which is hosting the data field,
section 4.3(line 39 ). Here, a field using a Cartesian representation with the
name extracted from the field input parameter is extracted and again tested
for validity.

To output a Fiber Grid or Fiber Field an according selector class has to
be created and fed into the VOutput<> slot. Here is a short example that
shows how to output a grid:

1 GridSelector myGS( g r id \ name , BPtr ) ;
2 myGrid << R << myGS;

How Fiber Grids and Fiber Fields are prepared and stored to the Fiber
Bundle is demonstrated in the code excerpts of chapter 6.

5.2.3 Rendering Modules

Rendering modules are similar to basic modules. Additionally they provide
a function for rendering an object. The rendering function is called by the
renderer each time an update of the view is requested.

The class VRenderObject is derived from VObject and thus inherits all
functionality as described in section 5.2.1. It provides a pure virtual function
to be overridden for rendering. An OpenGL context and state is provided as
well.

The render function of a VRenderObject is called from within the
environment render(inherited from VEnvironmentRenderObject) function
which restores the OpenGL state afterwards.

It is important for the 3D scene and camera navigation to have an bound-
ing information of the object to be rendered available.



CHAPTER 5. VISH - THE VIS(H)UALIZATION ENVIRONMENT 66

VRenderObjects provides three functions for manipulating the bounding
box of the object:

1 void resetBBox ( const RefPtr<ValuePool>&VP) const
2 void embrace ( const RefPtr<ValuePool>&VP, const p o i n t t&crd ) const
3 void closeBBox ( const RefPtr<ValuePool>&VP) const

Before preparing the OpenGL data structures the bounding box is reset.
When preparing the vertex data the embrace function can be used to grow
and fit the bounding box. Finally, it has to be closed with closeBBox.

As the render function is called very often, like several times a second, it
is a critic function and should be really fast. If object are not changing they
most likely should be cached and not be created again at each render call.

The idea is to prepare the basic data in the update function. In the
render function rendering objects loadable to the graphics card are created
and cached to the graphics card and finally called for drawing.

Geometric Algebra

Scientific visualization and also computer graphics in general make use of
lots of vector algebra. Usually linear algebra is used for that purpose. And
also often just arrays of floating point numbers are used to represent vectors.

However, there are different kinds of vectors which are not compatible
in calculations or have to be transformed differently. Vish differentiates
between several kinds of vector types, like: point, tvector, bivector,
trivector, etc. This is implemented using template classes, type defini-
tions and operator overloading based on the one dimensional array template
class FixedArray<Type, Size>.

For example, multiplying two vectors of type point is not allowed,
whereas subtracting two points will yield a tangential vector tvector. This
approach makes the source code more similar to writing mathematical no-
tation and makes it more error prove as well. I believe that using higher
level objects with included semantics for computation will avoid unnecessary
errors.

Furthermore, this is also motivated by the theory of geometric algebra
which provides a natural extension to arbitrary dimensions in vector calculus
(which is, for example, not the case for the cross product in linear algebra6),
see [10], also added to appendix C. Herein, examples are given that show the
benefit of using geometric algebra: simpler calculation and shorter source
code. For a basic introduction to geometric algebra see [61]. Further reading
for application in physic related problems see [23].

6Which is well defined in 3D only.
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OpenGL

OpenGL is a library for rendering 3D graphics in real time accelerated by
modern graphics hardware. Furthermore, it is a widely used standard and
available on multiple platforms like, Windows, Linux and Mac OS, see [32].

In contrast, DirectX which is often used for real time 3D graphics espe-
cially in game development is neither a standard nor does it support as many
platforms.

Thus, Vish supports real time 3D graphics using OpenGL. A complete
guide on programming OpenGL can be found in [51] and [50]. There are
several possibilities how geometries can be created that have their own ad-
vantages and disadvantages. These are described in the following section.

Using OpenGL in a Rendering Module

OpenGL code is directly used in the draw function for rendering. The geom-
etry of an object may be defined by geometric primitives using the glBegin(

GLenum mode ) and glEnd(). Hereby, the GLenum specifies the type of the
primitive. Examples for possible types are points, lines, triangles, quads,
quadstrips, etc. Necessary information for a primitive is provided inside the
begin-end block using OpenGL calls for vertex positions, vertex colors, tex-
ture coordinates and similar. The OpenGL calls can be mixed with C++
code as well. Listing 5.6 shows an example that creates a helix using a
GL QUAD STRIP.

Listing 5.6: Example of creating 3D object geometry by using glBegin(

GLenum mode ) and glEnd(). The example is an excerpt of the tutorial ex-
ample found in /tutorial/opengl/Simple3DObject/Simple3DObject.cpp

1 glBegin ( GL QUAD STRIP ) ;
2 for ( int i =0; i<N; i++)
3 {
4 double phi0 = i *dphi ,
5 phi1 = ( i +1/complexity )* dphi ;
6

7 point A, B;
8 A = r * cos ( phi0 ) , r * s i n ( phi0 ) , phi0 * zs ;
9 B = r * cos ( phi0 ) , r * s i n ( phi0 ) , phi1 * zs ;

10

11 bivector N;
12 N = cos ( phi0 ) , s i n ( phi0 ) , 0 ;
13

14 embrace ( Context , A ) ;
15 embrace ( Context , B ) ;
16

17 glNormal ( N ) ;
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Figure 5.4: Helix rendered by the OpenGL code shown in listing 5.6.

18 g lVertex ( A ) ;
19 g lVertex ( B ) ;
20 }
21 glEnd ( ) ;

Here, a strip of quad primitives is created by stepping forward in the
loop and adding two vertices with the same surface normal. The glNormal

function encapsulates the OpenGL function glNormal3f for convenience and
the glVertex accordingly. Note, the usage of the VRenderModule member
function embrace to enlarge the objects bounding box on the fly, see listing
5.6 line 14 and line 15.

This method can be very convenient for certain types of geometry but
usually is very slow. While still using the same OpenGL calls this method
can be accelerated drastically by compiling the calls into a so called display
list. A pre compiled list of subsequent OpenGL commands will be executed
much faster. To compile a display list in Vish use the macro glCompile( )

which basically encapsulates the OpenGL command glNewList(), as shown
in listing 5.7.

Listing 5.7: Compiling a display list in Vish

1 RefPtr<Disp layLi s t > DL;
2 glCompile ( *DL )
3 {
4 glBegin ( /* . . . */ ) ;
5 /* . . . */
6 glEnd ( ) ;
7 }

Of course, performance will only be gained when not recompiled with
every call of the VRenderObject’s code render function. Thus, the display
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list should be remembered and just be called and only be recompiled when
geometry changes.

Vish provides a technique to cache a display list object using a so called
rendering cache, section 5.3. Listing 5.8 shows an example on how to use
enable this caching functionality. The [] operators are used to create and
the operators are used to access the rendering cache.

Listing 5.8: Code excerpt describing the caching of a display list in a Vish
intercube. Taken from:
/tutorial/opengl/DisplayListObject/DisplayListObject.cpp

1 double complexity = 0 . 5 ;
2 Complexity << Context >> complexity ;
3

4 RefPtr<MyState> s t a t e = myState ( Context ) ;
5 RefPtr<ValueSet> RenderParameterSpace = new ValueSet ( ) ;
6 RefPtr<Disp layLi s t > DL;
7 try
8 {
9 DL = Context ( * s t a t e ) ( this ) ( RenderParameterSpace ) ;

10 }
11 catch ( . . . )
12 {}
13

14 i f ( DL && state−>complexity == complexity )
15 {
16 i f ( DL−>c a l l ( ) )
17 return ;
18 }
19

20 DL = Context [ * s t a t e ] [ this ] [ RenderParameterSpace ] ;
21 i f ( !DL ) throw ”No Display L i s t ! ? ” ;
22 s ta te−>complexity = complexity ;
23

24 resetBBox ( Context ) ;
25 glCompile ( *DL )
26 { /* . . . */ }

If there is no valid display list available the access in line 9 will fail, a
new list object will be created in line 20 and compiled using the glCompile

in line 25.
If a valid display list was retrieved dependent on the state, the module

and a rendering parameter space the custom parameter complexity is also
checked for being up-to-date additionally in line 14. Finally, the display list
is called and the geometry drawn in line 16.

Unfortunately, the above described techniques to create and draw
OpenGL geometries will not be supported in OpenGL versions newer than
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3.0. So, for implementing quick tests or some modules for prototyping this
might still be an option but not for long term features in Vish.

Display lists are superseded by so called vertex buffer objects (VBOs).
This technique is similar to enabling textures in OpenGL. Buffers or data
arrays have to be created which are then bind. Data is filled into the bind
buffers. A bind buffer can then is drawn by a single OpenGL command, such
as glDrawArrays or glDrawElements. Of course, data buffers must satisfy
certain layouts required by the drawing commands.

Vish provides interfaces for these OpenGL functions, as shown in listing
5.9. The example source code created VBOs for the same helix geometry as
in listing 5.6.

Listing 5.9: Code excerpt describing the creation of vertex buffer objects.
Taken from:
/tutorial/opengl/VertexBufferObject/VertexBufferObject.cpp

1 RefPtr<VBO> myVBO;
2 RefPtr<VertexArray> Points = new TypedVertexArray<point >() ;
3 RefPtr<NormalArray> Normals = new TypedNormalArray<bivector >()
4 {
5 std : : vector<point> PointData ;
6 std : : vector<bivector> NormalData ;
7

8 PointData . r e s i z e ( 2*N ) ;
9 NormalData . r e s i z e ( 2*N ) ;

10

11 for ( int i = 0 ; i < N; i++ )
12 {
13 /* . . . compute po in t s A, B and b i v e c t o r N as above . . . */
14

15 PointData [ 2* i ] = A;
16 PointData [ 2* i +1] = B;
17 NormalData [2* i ] = N;
18 NormalData [2* i +1] = N;
19 }
20 Points −>load ( PointData ) ;
21 Normals−>load ( NormalData ) ;
22 }
23 myVBO−>append ( Points ) ;
24 myVBO−>append ( Normals ) ;
25

26 myVBO−>setRenderer ( new DrawArrays (GL : : QUAD STRIP, 2*N) ) ;

First, a VBO object has to be created. Then, data arrays are prepared,
see line 2 and line 3. Next, std::vectors are used to store the computed



CHAPTER 5. VISH - THE VIS(H)UALIZATION ENVIRONMENT 71

geometry data in RAM7. When the data in RAM is complete it is loaded
into the data arrays and, thus, loaded in the memory of the graphics hard-
ware, line 21 and line 22. The data arrays have to be appended to Vish’s
VBO object and finally the renderer has to be configured with the correct
information about the type and size of data, line 26.

Prepared VBO objects can be cached in the same way as a display list.
Listing 5.10 shows the details.

Listing 5.10: Code excerpt describing the caching of vertex buffer objects.
Taken from:
/tutorial/opengl/VertexBufferObject/VertexBufferObject.cpp

1 RefPtr<MyState> s t a t e = myState ( Context ) ;
2 RefPtr<ValueSet> RenderParamSpace = new ValueSet ( ) ;
3 RefPtr<VBO> myVBO;
4 try
5 {
6 myVBO = Context (* s t a t e ) ( this )
7 ( RenderParamSpace ) ( VERTEXBUFFER( ) ) ;
8 }
9 catch ( . . . ) { }

10 i f (myVBO && !myVBO−>empty ( ) && state−>complexity==complexity )
11 {
12 i f (myVBO−>c a l l ( ) )
13 return ;
14 }
15

16 myVBO = Context [* s t a t e ] [ this ]
17 [ RenderParamSpace ] ( VERTEXBUFFER( ) ) ;
18

19 myVBO−>c l e a r ( ) ;
20

21 s ta te−>complexity = complexity ;
22

23 /* . . . f i l l VBO as de s c r i b ed above . . . */
24

25 myVBO−>c a l l ( )

The only difference is the additional test if the VBO is empty in line 10.
Otherwise it is totally equivalent to listing 5.8.

Shaders can also be used for rendering. Vish provides a class called
Program for that purpose. The fragment, geometry or vertex shader code is
then stored in a static const char string.

Listing 5.11 shows how a shader program is created, line 4, how it is
validated for correct syntax, line 7, and how it is activated for use, line 12.

7Random Access Memory
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Unexpected exceptions are caught in line 14. Uniform variables of the shader
code can be accessed using the setUniFormValue* member function of the
Program class.

Listing 5.11: Code excerpt describing how to use Program with a OpenGL
shader.

1 RefPtr<Program>&MyProgram = FR. MyProgram ;
2 try
3 {
4 MyProgram = new Program( co lormap vertex shader ,
5 co lormap fragment shader ) ;
6

7 i f ( ! MyProgram−>i s V a l i d ( ) )
8 {
9 puts ( ”MyRenderModule : i n v a l i d program ! ” ) ;

10 return ;
11 }
12 MyProgram−>use ( ) ;
13 }
14 catch ( const Program : : Error&E)
15 {
16 E. p r in t ( ”Compiled program not usab le ” ) ;
17 a s s e r t ( 0 ) ;
18 }
19

20 MyProgram−>setUni formValue i ( ”volumedata” , 0 ) ;
21 MyProgram−>setUni formValue i ( ” colormap” , 1 ) ;
22

23 {
24 double va l = 1 . 0 ;
25 Sharpness << Context >> va l ;
26 MyProgram−>setUni formValuef ( ” Sharpness ” , s td : : exp (5* va l ) ) ;
27 }
28 {
29 int N = 1 ;
30 NumberOfPeaks << Context >> N;
31 MyProgram−>setUni formValue i ( ”NumberOfPeaks” , N) ;
32 }

For more information of shader programming in general, see [50] and for
more examples in Vish see the tutorial section of Vish.

5.2.4 Vish Scripts

A simple script language is used to define networks in Vish. At the current
state the script languages enables to create modules, to set parameter values,
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to connect parameters and to open *.f5 data files. It is a keyword free
language and supports UTF8.

A script file can be loaded by using the File->Open of the Vish GUI
or by giving the script as the first parameter when starting Vish from the
command shell, for example from the /data directory:

../bin/vish Analytic.vis

A new module can be created by using the name string of its VCreator.
This string also is used to create the context menu for module creation in
the GUI, section 5.2. A module found in Utility/Point3D can be created
using the same string followed by a name for the instance the module. For
example:

Utility/Point3D myPoint

Parameter values can be set by using the name of the module instance
followed by the name of the parameter to be set separated by a dot. An
equality followed by the value will set the parameter value. If the value is of
wrong type or if the value is out of range of the min and max properties of
the parameter the script line will be ignored. For example:

myPoint.x=1.5

Setting a parameter can be done within the context of a certain view port
window. A parameter can have different values in different view ports. To
specify the view port use {} after the parameter name. For example:

myPoint.x{Viewer2}=1.5
A parameter can be connected to the an other parameter. Most fre-

quently it is connected to an output of another module. In that case it is
sufficient to specify the name of the module instance and the appropriate
output parameter is found automatically. The => operator is used for pa-
rameter connection. A connection can also be done to an explicit parameter.
For example:

vertices.grid=>geodesics

To load an F5 file via script the @ symbol is used followed by the string
of the directory and filename enclosed by "". For example:

@"../data/mydata.f5"

The # symbol is used for comments. All characters after will be ignored
until the next newline.

Enclosing the name of a module instance by <> forces an update of the
module:
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<myPointViewer1>

Prefixing a ! in front of a name of a module instance will touch the
module and flags it for a required update:

!myPoint

The GUI frame showing the module can by minimized hiding all pa-
rameter GUI controls. Then only the name of the module is shown in the
network, see left most figure of figure 5.3:

Network.iconify(myPoint)

Listing 5.12 shows a typical *.vis script using most of the script features
described above.

Listing 5.12: Typical vis script defining a Vish network. The example shows
the content of /fish/lakeview/cephalus/UnigridIsosurface.vis

1 CreateFiber / A n a l y t i c S c a l a r f i e l d A n a l y t i c S c a l a r F i e l d
2 #A n a l y t i c S c a l a r F i e l d . spacet ime=>MyGrid . spacet ime
3 #! A n a l y t i c S c a l a r F i e l d . a
4 <A n a l y t i c S c a l a r F i e l d {Viewer1}>
5

6 Colormaps/Colorramp Fie ldCo lo r s
7 Display / OrthoS l i c e MyFie ldS l i ce
8 MyFie ldS l i ce . colormap=>Fie ldCo lo r s
9

10 MyFie ldS l i ce . s c a l a r f i e l d=>A n a l y t i c S c a l a r F i e l d
11 MyGridBox . spacet ime=>A n a l y t i c S c a l a r F i e l d
12

13 Network . i c o n i f y ( A n a l y t i c S c a l a r F i e l d )
14 Network . i c o n i f y ( MyFie ldS l i ce )
15 Network . i c o n i f y (MyGridBox)
16

17 Display /BoundingVolume BVol
18 BVol . source=>MyFie ldS l i ce
19

20 Compute/ I s o S u r f a c e I s o S u r f a c e
21 I s o S u r f a c e . s c a l a r f i e l d=>A n a l y t i c S c a l a r F i e l d
22 I s o S u r f a c e . i s o l e v e l =0.5
23 #<I soSur face >
24

25 Display / SurfaceView IsoView
26 IsoView . g r id=>I s o S u r f a c e
27 #<IsoView{Viewer1}>
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5.3 Caching

A good caching approach in the visualization network8 is identified as key
requirement for interactive exploration of huge datasets. Caching avoids
unnecessary re-computations, speeds up computation and rendering, leading
to interactive frame rates that would not be possible otherwise.

Vish allows caching on three levels. Firstly, caching in a network mod-
ule. Secondly, data can be cached at the any data sources, especially on
Fiber Bundle data sources and on data flow nodes itself. Finally, OpenGL
display lists and VBOs can be cached directly on the graphics hardware,
section 5.2.3. All these caching techniques are used during the implementa-
tion of the modules needed for visualizing geodesics.

Data can be cached or stored in the network module by using a State

object, section 5.2.1. This procedure is suitable for small sets of data, like
remembering a certain attribute value from a last call of update, to check if
it had been changed or similar. Data storage is kept outside the module.

The description below is following the content of [12], also included in
appendix C.

Data can be cached in data sources. The data source itself has to be a so
called InterCube object, as described in [11]. A template class, the so called
OperatorCache is used to cache some computational results associated to the
InterCube. Any class can inherit the InterCube properties be being derived
from the MemCore class InterCube. A data set like, for example, a vector of
doubles can then be stored by initiating the template OperatorCache:

typedef OperatorCache<std::vector<double> > OC t;

”Now given an InterCube object provided to a computational routine,
one may retrieve an OperatorCache object that may be stored there. If not,
we would need to create one anyway:” [12]

1 void VizNode : : compute ( InterCube &MyData)
2 {
3 OC t*OC = OC t : : r e t r i e v e ( MyData , this ) ;
4 i f ( !OC ) OC = new OC t ( ) ;
5 }

Data is retrieved from the InterCube dependent on the data type and the
visualization module. Data again is stored outside the local memory.

Needed re-computation, for example when certain parameters get
changed, can be decided by utilizing the unchanged() member function of
the OperatorCache template. The function takes a ValueSet that is tested
for changes.

8or visualization cascade, in contrary to visualization pipeline
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Listing 5.13: Code fragment showing how to use a ValueSet of TypedSlots
with a OperatorCache.

1 RefPtr< ValueSet > Changeables = new ValueSet ( ) ;
2

3 *Changeables <<= IsoValue ( Context ) ;
4

5 i f ( OC−>unchanged ( Changeables ) )
6 {
7 /* . . . do something wi th the data e x i s t i n g in OC . . . */
8 return ;
9 }

10 /* . . . compute new data and put them in to the OC . . . */

After a new ValueSet is created in line 1 the TypedSlot<double>

IsoValue is added to the set using the <<= operator in line 3. The Op-
eratorCache is then queried with the ValueSet wheter something has to be
done or not.

Data can be cached in Fiber Bundle data sources inside a Fiber Bun-
dle if it is stored as a Fiber Grid object, chapter 4. In that case the Fiber
Grid is identified by a double time and a string name for identification in
the Fiber Bundle. When additional values should influence the identification
they just can be concatenated to the name string.

Listing 5.14: Example of caching a Fiber Grid in a Fiber Bundle. Based on
the example described in [12].

1 Grid VizNode : : compute (Bundle&B, double time ,
2 string Gridname , string Fieldname ,
3 double I s o l e v e l )
4 {
5 string IsosurfaceName = Gridname + Fieldname + I s o l e v e l ;
6

7 RefPtr<Grid> I s o S u r f a c e = B[ time ] [ IsosurfaceName ] ;
8

9 i f ( ! I s o S u r f a c e )
10 {
11 RefPtr<Grid> DataVolume = B[ time ] [ Gridname ] ;
12 I s o S u r f a c e = Compute ( DataVolume , Fieldname , I s o l e v e l ) ;
13

14 B[ time ] [ IsosurfaceName ] = I s o S u r f a c e ;
15 }
16 return I s o S u r f a c e ;
17 }

Listing 5.14 shows a source code example where a Fiber Grid object is
cached in the Fiber Bundle. The caching is dependent on the actual time,
the Fiber Grid and the Fiber Field names of the underlying data source
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and a parameter IsoLevel. The Fiber Grid object IsoSurface is computed
and stored in the Fiber Bundle, line 11 to line 14. This is an expensive
operation since the underlying data sets may have to be loaded from disk
and the computation of the IsoSurface has to be done. In a second call of
the VizNode::compute function this operations are skipped because it can
successfully retrieve the IsoSurface from the Fiber Bundle B in line 7.

5.4 Data Field Interpolation and Finding Lo-

cal Coordinates

While the Fiber Bundle library provides a clear and unified structure to store
all kinds of scientific data, working with the library itself still needs special
some handling for different types, such as, checking for fragmented grids,
checking for refinements levels and similar.

When developing visualization modules some of the required source code
is needed frequently in a similar fashion. There is still room for implement-
ing convenience functions and classes that ease accessing Fiber Bundle data
structures.

In context of this work, for instance, the local index coordinates of a grid
object by a given world coordinate point had to be computed. The local
index coordinate is then used for data field interpolation. This is a common
approach, see, for example, [18].

Figure 5.5 shows two 2 dimensional grids and a point described in local
and in world coordinates. Computing local coordinates in an uniform regular
grid is straightforward by doing a linear interpolation of the local coordinates
of the cell that contains the point. But, when computing a local point in a
curvilinear multi-block grid things become more difficult, especially when
trying algorithms must be fast.

The modules that needed local index computation should work with all
possible grid data structures. The calculation needs different handling de-
pendent on the underlying data. Possible grids are uniform, multi-block,
curvilinear or AMR grids.

I introduced a class called LocalPointFinder. It takes a Fiber Slice, a
Fiber Grid and the Fiber Field holding the coordinate values as parameter
and provides a get function that returns a local coordinate and the fragment
ID of the fragment that contains the point in case of multi-block data by a
given world coordinate value:

bool get( const point position, pair<point, string>&data );

Now, a developer of a module can conveniently get the local coordinates
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Figure 5.5: A point is represented in world coordinates and in local index
coordinates. The left side shows the simple case where local coordinates can
be computed by linear interpolation. The right side shows local coordinates
in an curvilinear grid. The surrounding rectangular illustrates the bounding
box of the grid.

as shown in listing 5.15 without caring about the underlying grid structure.
After the creation of the LocalPointFinder class in line 8 its get function
is called, see line 20, where the local coordinates of the point myPoint are
retrieved into the pair<> localPoint.

Listing 5.15: Getting local coordinates of a grid object. Here, a
FieldSelector is used to extract all the grid information required for the
local point search.

1 FieldSelector F i e l d S e l e c t i o n ;
2 MyField << Context >> F i e l d S e l e c t i o n ;
3

4 /* . . . check i f data i s a v a i l a b l e in the F i e l d S e l e c t i o n . . . */
5

6 Info<Slice> c u r r e n t S l i c e = F i e l d S e l e c t i o n . F ie ldSource ;
7

8 RefPtr<LocalFromWorldPoint>
9 PointFinder = new LocalFromWorldPoint (

10 * c u r r e n t S l i c e . g e t S l i c e ( ) ,
11 F i e l d S e l e c t i o n . getGrid ( ) ,
12 F i e l d S e l e c t i o n . getGridname ( ) ,
13 F i e l d S e l e c t i o n . getGrid()−> g e t C a r t e s i a n P o s i t i o n s ( )
14 ) ;
15

16 pair<Eagle : : Phys ica lSpace : : point , s td : : string> l o c a l P o i n t ;
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17

18 Eagle : : Phys ica lSpace : : point myPoint ( 0 . 2 , 0 . 1 , 4 . 4 ) ;
19

20 bool t e s t = PointFinder . get ( myPoint , l o c a l P o i n t ) ;

The following sections describes more details of the
LocalFromWorldPoint class in depth. The class itself was the result
of several rewritings and optimizations and finally became a part of the core
of the Fiber Bundle library, found in /fish/fiber/baseop.

5.4.1 UniGrid

The simplest case for computing a local coordinate applies to single-block
uniform regular grids. Utilizing a fragment iterator as described in chapter
4 will automatically capture support for single and multi-block grids. Inside
the iterator it has to be checked if the vertex data is given procedurally.

To completely describe a uniform regular grid it is sufficient to know its
world position bounds and the number of cells in each direction, chapter 4.

Getting this data is shown in listing 5.16. Line 8 checks if a procedural
ProcArray t could be retrieved. If successful this describes a uniform regular
grid.

Listing 5.16: Example of checking for a simple uniform field and doing a
simple linear interpolation to compute local index coordinates of a given
space point.

1 RefPtr<Field> myField
2 point p o s i t i o n ;
3

4 /* . . . */
5

6 RefPtr<ProcArray t> PCrd = coords−>getData ( ) ;
7

8 i f ( PCrds )
9 {

10 point DomainStart = PCrd−> f i r s t ( ) ;
11 point DomainEnd = PCrd−>l a s t ( ) ;
12 tvector DomainDiagonal = DomainEnd − DomainStart ;
13

14 MultiIndex<3> FSize = PCrd−>S i z e ( ) ;
15 point max f l oa t index ;
16 max f l oa t index = FSize [0 ]−1 , FSize [1 ]−1 , FSize [2 ] −1 ;
17

18 f l o a t i n d e x = point ( tvector ( component wise ( component wise (
19 p o s i t i o n − DomainStart , DomainDiagonal ,
20 Eagle : : Operator< ’ / ’ >() ) ,
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21 max f loat index , Eagle : : Operator< ’ * ’ >()) ) ) ;

The following code shows how to do the interpolation to compute lo-
cal coordinates. The dimensions in all axis directions are stored in the
DomainDiagonal. The maximal index length of the 3D data array is com-
puted by (sizeX−1, sizeY −1, sizeZ−1), see line 18. Now, the interpolation
is done by computing xlocal = xpos−xstart

xinterval
(maxindexx) in all dimensions simul-

taneously using the component wise template. This allows to do mathemat-
ical operations component wise on a FixedArray<> and furthermore enables
the use of SIMD instructions on the processor, if possible.

5.4.2 Multiblock

When dealing with a multi-block dataset at first the block that contains
the world point has to be found. The fragments itself may be uniform or
curvilinear.

A simple and quick to implement solution would be to do an iteration
over all fragments and test if a fragment’s bounding box contains the world
point. However, when having thousands of block more sophisticated methods
can speed up the search drastically.

In case of fragmented uniform data just one fragment would be found as
a result of a testing bounding boxes. When dealing with curvilinear grids
more than one fragment can be found that contains the world point, because
boundinx boxes overlap, see figure 5.7.

I chose a binary tree search for finding candidate multi-block. A KDTree
is utilizzed. Distances to the center of candidate fragments are computed
and returned into a STL container.

I implemented an N dimensional KDTree based on John Tsiombikas
C implementation (http://code.google.com/p/kdtree/). It was almost
completely rewritten using C++ template programming.

The tree stores any data elements at a N dimensional position. When all
data was inserted into the tree a range query can be done by specifying a N
dimensional position and a distance. All data elements inside this distance
are then returned.

Figure 5.6 shows the geometrical structure of a KDTree. Data positions
are inserted into the tree. A new data position is stored left of right of the
parent position. Thus, the inserted data position splits the space in two
“child” regions. On each level of the tree nodes the direction of the splitting
is switched. In 2D the space is split by alternating lines in x and y direction.
In 3D space is split by alternating planes or bivectors with normals in x, y
and z direction.

http://code.google.com/p/kdtree/


CHAPTER 5. VISH - THE VIS(H)UALIZATION ENVIRONMENT 81

1

2

3

4

5

6

7
8

1

4

5

2

3

6

7
8

1

6 2

58

7 4

3

Figure 5.6: Left: Geometrical illustration of a KDTree. Points are added into
the tree in order of their numeration. Each insertion splits the space in two
regions: left and right or bottom and top. If a point is added it is inserted
as left or right child node dependent on the position of the parent. On each
tree level the direction of the splitting axis is alternated and the remaining
subspace is split. Right: Tree structure of objects. Each node can have a left
and a right child. The tree corresponds to the positions on the left. Bottom
nodes are inserted left and top nodes right.
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Listing 5.17 shows the structure of the KDTree class. The template pa-
rameters are int N for the dimension of the used space or the dimension of
the locations where data is stored and class T for an arbitrary data type.
It is derived from MemCore::ReferenceBase to enable reference counting for
KDTree pointers.

The tree itself is build from tree nodes. Every node has a left and a
right child and stores the data T data at the N dimensional position pos.
Additionally the direction of the splitting has to be remembered for each
node. The tree node is implemented as an inner struct Node of KDTree, see
line 4.

When new data is inserted into the tree, only one coordinate of the N -
dimensional position is checked whether it is located left or right of the
current node. The current splitting coordinate is stored in the dir member
of the node. If a leaf node is reached the position and its associated data is
added as a left or right child.

The Node’s insert function is defined recursively, line 22. The KDTree’s
insert function just handles the right start case and starting insertion at its
root Node, line 39.

Listing 5.17: Class header of the KDTree class.

1 template<int N, class T>
2 class KDTree : public MemCore : : ReferenceBase<KDTree<N,T> >
3 {
4 struct Node
5 {
6 FixedArray<double , N> pos ;
7 int d i r ;
8 T data ;
9 Node* l e f t ;

10 Node* r i g h t ;
11

12 Node ( const FixedArray<double , N>&posP ,
13 const int dirP , const T dataP )
14 : pos ( posP ) , d i r ( dirP ) , data ( dataP ) , l e f t ( 0 ) , r i g h t (0 ) {}
15

16 ˜Node ( ) ;
17

18 template<class Functor>
19 void cal lFromFar ( const FixedArray<double , N>&queryPos ,
20 Functor&func ) ;
21

22 void i n s e r t r e c ( const FixedArray<double , N>&posP ,
23 const T&data ) ;
24

25 template <class Container>
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26 void f i n d n e a r e s t ( const FixedArray<double ,N>&posP ,
27 double range , Container&l i s t ) ;
28

29 } ;
30 Node* root ;
31

32 public :
33 KDTree ( )
34 : MemCore : : ReferenceBase<KDTree<N,T> >(this )
35 , root (0 ) , min range ( 0 . 0 ) {}
36

37 ˜KDTree ( ) ;
38

39 void i n s e r t ( const FixedArray<double , N>&pos ,
40 const T&data ) ;
41

42 template<class Container>
43 bool nea r e s t r ange ( const FixedArray<double , N>&pos ,
44 const double range ,
45 Container&r e s ) ;
46

47 template<class Functor>
48 void cal lFromFar ( const FixedArray<double , N>&queryPos ,
49 Functor&func ) ;

The nearest range function utilizes the split space information to speed
up the recursive range check. Many unlikely candidates can be excluded from
the range test. A N -dimension position, a range value and a container have
to be specified as parameters.

The function uses a template call-back to fill an container defined as a
type trait, section 3.1. Support for any container can be added by template
specialization of KDTreeResult as shown in listing 5.18. Data insertion is
encapsulated by the insert function of the type trait, see line 13.

The container itself is passed as a reference to the nearest range func-
tion. This example shows how a STL multimap can now be used to return
results of a tree query. The data elements of the tree and the squared dis-
tance are returned as a multimap. Data insertion automatically sorts the
elements by its distances.

Any other data container can be utilized by adding the according trait.
The KDTree is thus independent of the container type and highly reusable,
as suggested in [31].

Listing 5.18: Adding a container type that can be filled with results from a
KDTreff range query.

1 template<class Container>
2 struct KDTreeResult ;
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3

4 template<class T>
5 struct KDTreeResult<std : : multimap<double ,T> >
6 {
7 std : : multimap<double ,T> & r e s u l t ;
8

9 KDTreeResult ( std : : multimap<double ,T>&r )
10 : r e s u l t ( r )
11 {}
12

13 void i n s e r t ( const double d i s t s q , const T&data )
14 {
15 r e s u l t . i n s e r t ( std : : pa ir<double ,T>( d i s t s q , data ) ) ;
16 }
17 } ;

Listing 5.19 shows the usage of the KDtree. A four dimensional tree is
created. Data is filled into the tree. Then a multi-map container is prepared
in line 12 and used for the range query at querypos with range 0.5 in line
16.

Listing 5.19: Using the KDTree.

1 RefPtr<KDTree<4, int> >t r e e = new KDTree<4, int >() ;
2

3 FixedArray<double , 4> querypos , pos1 , pos2 ;
4 pos1 = 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ;
5 pos2 = 0 . 5 , 0 . 0 , 0 . 0 , 0 . 1 ;
6

7 t ree−>i n s e r t ( pos1 , 1 ) ;
8 t ree−>i n s e r t ( pos2 , 2 ) ;
9

10 /* . . . i n s e r t much more i n t data . . . */
11

12 s t l : : multimap<double , int>res map ;
13

14 querypos = 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 ;
15

16 t ree−>nea r e s t r ange ( querypos , 0 . 5 , res map )

Such a KDTree is used in the LocalFromWorldPoint class to chose can-
didate fragments. In case of a fragmented vertex field a KDTree is created
in the constructor of LocalFromWorldPoint by iterating over all fragments,
computing the center of each fragment and storing the fragment index at its
center positions into a 3D KDTree.

Since the KDTree only has to be computed once for a fragmented grid
object it is cached using an InterCube object to the coordinate field. To
enable this feature an additional wrapper template class has to be provided
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that extends the KDTree by an additional interface, see listing 5.20.

Listing 5.20: Allow a KDTree to be stored in an Vish InterCube by deriving
from Memcore::Interface<>

1 template<int N, class T>
2 struct KDInterface : public MemCore : : I n t e r f a c e <KDTree<N, T> >
3 {
4 MemCore : : RefPtr<KDTree<N, T> > Tree ;
5

6 KDInterface ( const MemCore : : RefPtr<KDTree<N, T> > TreeP )
7 : Tree ( TreeP )
8 {}
9 } ;

In the constructor of LocalFromWorldPoint the KDTree is cached to the
vertex field RefPtr<Field> coords:

1 RefPtr<KDTree<3, int> > MyTree ;
2

3 RefPtr<KDInterface <3, int> >
4 TreeInt = coords−>f i n d I n t e r f a c e ( typeid (KDTree<3, int>) ) ;
5

6 i f ( ! TreeInt )
7 {
8 MyTree = new KDTree<3, int >() ;
9 TreeInt = new KDInterface <3, int >( MyTree ) ;

10 coords−>addIn t e r f a c e ( TreeInt ) ;
11 }
12 else
13 {
14 MyTree = TreeInt−>Tree ;
15 }

Besides storing the centers and the fragment numbers, also the size or
bounding radius of the largest fragment is stored. This maximal bounding
radius is used for the tree range queries. This ensures that no fragment
candidates are missed. Figure 5.7 illustrates an example in 2D showing
fragments, midpoints, the query point and the query range.

Having found these candidates a more accurate test has to be done to
find the correct fragment and fragment cell, that contains the world point.

5.4.3 Curvilinear

Finding a the containing cell in a arbitrary curvilinear hexahedral cell in a
curvilinear grid turned out to be a non trivial problem.
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Figure 5.7: KDtree used for a range query on mid points of bounding boxes of
curvilinear multi-blocks. Left: Bounding boxes of curvilinear blocks. Right:
Mid points of bounding boxes. The maximum diagonal of all bounding boxes
is used as the diameter of the range check at an arbitrary position (black dot).

Local Coordinates in one Hexahedral Cell

First I tried to find a map to transform a point from world coordinates to
local coordinates when it is already known that the point is located inside
a cell. I reduced to a two dimensional case for investigation. In that case a
general four sided polygon have to be mapped to a normalized square of size
1.0, see figure 5.9.

Though, on the first glance, it looked similar to barycentric coordinates
in a triangle, the additional geometry constrains turned out to lead to a non
conform mapping, in contrast to the linear mapping in case of a triangle.
Besides just mapping the corner points also all four boundary lines must be
continuously constrained to the borders.

I finally found a suitable transformation method applicable to general 3D
hexahedral cells in [54]:

A world point p(u, v, w), with u, v and w being local coordinates in the
curvilinear cell can be computed using the following trilinear interpolation
of the world coordinates of the eight corner points p0, p1 ... p7:

p(u, v, w) = (1− u)(1− v)(1− w) · p0 + u(1− v)(1− w) · p1+
(1− u)v(1− w) · p2 + (1− u)(1− v)w · p3+

uv(1− w) · p4 + u(1− v)w · p5+
(1− u)vw · p6 + uvw · p7

(5.1)

Given a point p∗(x, y, z) in world coordinates the local coordinates u, v, w
are found by using an iteration method. First, a point p(u, v, w) is guessed
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Figure 5.8: Mapping a general four sided polygon to a normalized quadratic
turned out to be a non conform mapping.
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Figure 5.9: Three dimensional hexahedral cell.



CHAPTER 5. VISH - THE VIS(H)UALIZATION ENVIRONMENT 88

inside the cell assuming certain local coordinates. I choose u = v = w = 0.5
the point in the center of the cell. The Taylor series expansion of equation
(5.1) yields:

p(u+ δu, v + δv, w + δw) = (5.2)

= p(u, v, w) +
∂p

∂u
δu+

∂p

∂v
δv +

∂p

∂w
δw +

+ O(δu2) +O(δv2) +O(δw2)

with:

∂p

∂u
= (1− v)(1− w)(p1 − p0) + v(1− w)(p4 − p2)+ (5.3)

+ (1− v)w(p5 − p3) + vw(p7 − p6)

∂p

∂v
= (1− u)(1− w)(p2 − p0) + u(1− w)(p4 − p1)+ (5.4)

+ (1− u)w(p6 − p3) + uw(p7 − p5)

∂p

∂w
= (1− u)(1− v)(p3 − p0) + u(1− v)(p5 − p1)+ (5.5)

+ (1− u)v(p6 − p2) + uv(p7 − p4)

(5.6)

The desired increments δu, δv and δw can be computed by solving the
following linear 3× 3 equation system:

∂p

∂u
δu+

∂p

∂v
δv +

∂p

∂w
δw = p∗ − p (5.7)

Using the computed increments of the equation system a new point p
is computed using equation (5.1). Using the new point new derivatives are
computed and the linear system is solved, again. This is repeated until
||p∗ − p|| falls under a certain threshold.

In the implemented algorithm a threshold of approximately 1/100th

of the cells size is used which is computed once in the constructor of
UniGridMapper, see below.

Typically finding the local point requires one to two iteration steps to drop
under the threshold. If the cell is distorted heavily the number of iterations
increases.

This algorithm is also used to test if a point is contained in a certain cell.
In that case the result must be inside (0, 0, 0) and (1, 1, 1).

The algorithm is used for two purposes. Firstly, to check if a point is
located inside a cell, and secondly for the computation of the local hexahedral
grid coordinates, which is already computed during the first test.
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Figure 5.10: A curvilinear grid assigned to an uniform grid. The Uni-
GridMapper provides a mapping from one uniform grid cell to curvilinear
cells that touch it.

Finding Candidates in the Grid

When applying the test to a grid of curvilinear cells this would have to be
done for all cells until the containing cells is found.

To speed up the search within a curvilinear grid I introduced a new data
structure that reduces the number of cells to a few candidate cells for the
testing, analogously to the KDTree for multi-blocks.

The idea was to create a uniform grid that matches the size of the bound-
ing box of the curvilinear grid and then provide a map from uniform cells to
curvilinear cells. Curvilinear cells touching a uniform grid cell are assigned to
the uniform cell. Figure 5.10 illustrates the method. The example illustrates
the mapping of one uniform grid cell (fat dashed line) to four curvilinear cells
(fat line). All other uniform grid cells provide a similar mapping.

I called the introduced class UniGridMapper. It provides the mappings
for one curvilinear block. The UniGridMapper stores a list of indices of
curvilinear cells that is accessed by the index of the uniform grid cell.

These lists are generated in the constructor of the class, providing the
full mapping afterwards. While doing the iteration over all curvilinear cells
also the bounding box of the UniGridMapper is computed and the average
edge length of all curvilinear cells. The average edge length, or better, its
1/100th, is used for stopping the newton iteration as described earlier. The
signature of the constructor is showed in listing 5.21.

Listing 5.21: Some interface details of class UniGridMapper
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1 typedef MemArray<3, point> CoordsArray t ;
2

3 UniGridMapper ( const RefPtr<CoordsArray t>& CurviCoords ,
4 const double r e s s c a l e = 1 . 0 ,
5 const double p r e c s c a l e = 1 .0 ) ;
6

7 /* . . . */
8

9 unsigned
10 l oca lCe l lCoordinatesFromCurviGr id ( const point & p , point & uvw ,
11 double g r i d e p s i l o n = 0 . 0 ) ;
12 /* . . . */

A MemArray holding the coordinates of the curvilinear block must be
provided. Optional parameters control the resolution of the uniform grid,
line 4, and the precision of the reached newton iteration, line 5. Figure 5.11
shows different resolutions of the uniform grid.

The UnigridMapper class also implements the iteration method
for the local coordinate computation, by providing the function
localCellCoordinatesFromCurviGrid, see line 10.

When calling the function the list of curvilinear cells mapped to the
according uniform grid cell are tested with the iteration method. Here, a
problem arose at the borders of the curvilinear cells. Due to numerical in-
accuracies it could happen, that a point was located slightly outside of, for
example, four neighbored curvilinear cells.

To avoid to introduce epsilon tests I introduced a distance measure from
the computed point to the closest borders of the cell. If none of the candidate
cell contains a local point directly the “best” point, closest to a cell boundary
is returned.

Listing 5.22 shows the neighbor test in line 17. The DistPoint t struct

is used to store possible points with distance and curvilinear cell index in
a container, line 11 and line 32. The city block (Manhattan) distance is
computed in the for loop in line 22.

Listing 5.22: Handling local coordinates that are not found correctly at the
borders of curvilinear cells

1 struct Dis tPo in t t
2 {
3 double d i s t ;
4 point uvw ;
5 MultiIndex<3> s e l f ;
6 } ;
7

8 /* . . . */
9
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10 MultiIndex<3> t a r g e t C e l l ;
11 std : : vector< Dis tPo in t t > Eps i lonPreventer ;
12

13 /* . . . compute l o c a l coord ina t e s in t o po in t uvw . . . */
14

15 l oca lPo intToIndex (uvw , t a r g e t C e l l ) ;
16

17 i f ( f abs ( t a r g e t C e l l [ 0 ] − c u r v i C e l l [ 0 ] ) <= 1.0 &&
18 f abs ( t a r g e t C e l l [ 1 ] − c u r v i C e l l [ 1 ] ) <= 1.0 &&
19 f abs ( t a r g e t C e l l [ 2 ] − c u r v i C e l l [ 2 ] ) <= 1.0 )
20 {
21 d i s tPo in t . d i s t = 0 . 0 ;
22

23 for (unsigned i = 0 ; i < 3 ; i++ )
24 {
25 d i f f P o i n t [ i ] = uvw [ i ] − t a r g e t C e l l [ i ] ;
26 d i s tPo in t . d i s t += ( d i f f P o i n t [ i ] < 1−d i f f P o i n t [ i ] ) ?
27 d i f f P o i n t [ i ] : 1−d i f f P o i n t [ i ] ;
28 }
29 d i s tPo in t . uvw = uvw ;
30 d i s tPo in t . s e l f = c u r v i C e l l ;
31

32 Eps i lonPreventer . push back ( d i s tPo in t ) ;
33 }

In case all tests of the candidate cells fail, the local coordinate
of a neighbor with the smallest city block distance is returned by
localCellCoordinatesFromCurviGrid in point&uvw. In such a case the
returned local point was chosen from the EspilonPreventer.

Since the initialization of the UniGridMapper is an expensive operation
the UniGridMappers are cached into the Fiber Grid object, where they are
stored as a fragmented field according to the fragmentation of the grid.

They are stored in a skeleton with dimensionality three and index depth
two as a relative representation into the Fiber Grid of the vector field, see
chapter 4.

So, when one block is queried for a local coordinate again the
Unigridmapper is extracted from the Fiber Bundle.

Summarizing the Steps

Following pseudo code summarized the process when a local coordinate from
a world point using the LocalFromWorldPoint’s get function is requested
on a curvilinear multi-block grid:

i f ( no KDTree i s found f o r the coord inate p o s i t i o n s f i e l d )
{
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Figure 5.11: Graphical output of a rendering module for visually debugging
the method used to find a local coordinate. A curvilinear grid (dark grey) is
surrounded by a UniGridMapper (light grey). The world point used for the
search is shown colored red. If a local point is found, within the threshold, it is
recomputed to world coordinates by linear interpolation and drawn in green.
The containing uniform cell is marked in red and the curvilinear cell is marked
in yellow. The pictures show different resolutions chosen in the uniform grid:
very low resolution on the left and higher resolution on the right. The module
can be found in /fish/lakeview/eye/retina/FindLocalCoordinates.cpp

and the illustrated scene can be started with the according .vis script located
in the same directory
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*Compute KDTree by i n s e r t i n g fragment IDs at cente r p o s i t i o n s
o f multi−b locks .

* cache KDTree as Inte rcube to the coord inate p o s i t i o n s .
}
e l s e

*Get KDTree from cache .

*Do a range t r e e query at the world p o s i t i o n and r e t r i e v e
candidate fragments .

f o r ( each fragment candidate )
{

i f ( no UniGrimapper i s found in the bundle f o r the fragment )
*Create UniGridmapper and s t o r e i t in the bundle .

e l s e
*Get Unigridmapper from bundle .

*Get candidate c u r v i l i n e a r c e l l s from the UniGridmapper .

f o r ( each candidate c e l l )
{

*Use i t e r a t i o n to f i n d l o c a l coo rd inate .
*Return a v a l i d l o c a l coo rd inate .

}
}

5.5 Basic Visualization Modules

During the development of the visualization modules and infrastructure
needed for geodesics I implemented some useful basic features along the way.
Here, five tools are presented that enhance any data visualization in Vish.
Two tools display coordinates, one shows the resolution of a uniform grid,
one labels colors of a color map with data values and one draws outlines of
a multi-block grid.

5.5.1 Coordinate Grid

Displaying a coordinate plane is a very basic and helpful tool when analyzing
3D data. The implemented module is a simple rendering module with no
required input connections. Coordinates are displayed as lines on a plane.
A line is drawn at every multiple of 10 and every 10th line is labeled by its
coordinate value. The main parameters of the module control the alignment,
the size, the refinement, the offset, the font size and font position.



CHAPTER 5. VISH - THE VIS(H)UALIZATION ENVIRONMENT 94

Figure 5.12: Coordinate Grid. A simple rendering module displaying basis
coordinate planes and coordinate values.

The coordinate plane can be aligned in the xy, xz, and yz plane. The size
can be fixed or be adjusted dynamically dependent on the camera distance.
If the size is controlled dynamically the size on screen will be constant when
zooming the camera. The refinement of the coordinate plane is always ad-
justed dynamically. But, one can choose between three levels of refinement:
normal, coarse and fine (finercoarser).

The coordinate plane can be shifted in direction of its normal by a the
offset parameter. Finally, the font size and the position can be controlled.
The distance between the border of the grid object and the font can be
set and a roll parameter defines the rotation around the coordinate plane
normal. The coordinate values are displayed in engineering convention using
the exponential notation.

5.5.2 Coordinate Grid Box

Another tool for analyzing 3D data and viewing its dimensions is the coordi-
nate grid box. It is a rendering module that visualizes a connected bounding
box. It also draws “rulers” on three main axis at multiples of 10 of the
coordinates and labels the rulers with coordinate values.

The important attributes are used to control the ruler refinement, ruler
size and the size, position and rotation of the coordinate labels.
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Figure 5.13: Coordinate Grid Box. A rendering module that displays the
bounds of a bounding box and labels coordinate axes with numbers.

5.5.3 Uniform Grid Lines

The GridLines visualizes the grid resolution of a 3D uniform grid. Either
the xy, xz or yz plane is shown. Therefore, a Fiber Grid must be connected
to the module. Some basic parameters such as color, colorscale and an offset
value are provided. The offset changes the position of the coordinate plane
along its normal direction.

Figure 5.14 illustrates the resolution of a uniform grid by showing a
bounding box and three coordinate planes drawn by three GridLine ren-
dering modules. Here, the xy plane has no offset, whereas the two other
planes have an offset of 0.5 moving the planes to the center of the grid.

5.5.4 Color Map Legend

When color maps are used to display some scalar fields then it is important
to know and see the mapping between colors and scalar values. Vish had no
such tool. It is common practice to show a color map using a colored bar and
labeling numbers in the screen space9, for example at the lower right corner
of the 3D view.

First, I planned to create one single module to display color bar and
number values. But then I recognized that it would be much more flexible
when separating into two distinct modules, one for the bar and one for the
labels. The labeling module would then be ’docked’ to the color bar module.

9camera image plane
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Figure 5.14: Uniform Grid Lines. A rendering module that displays the grid
resolution of a uniform grid. Here, three modules are used for drawing three
axis oriented planes illustrating the resolution.

Figure 5.15: Color Legend rendered by two distinct modules. One for the
color bar and one for the labels.
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That way the labeling module would be easily replaceable be other modules,
like a module that could display a histogram.

The basic idea was to build atomic components for HUD10 nodes that
can be connected and combined in different ways.

To specify a position in screen space a new attribute type was introduced:
Point2D. Coordinates in screen space are normalized and run from 0.0 to 1.0
in x and y direction. A HUD component takes a 2D position as input and
outputs a 2D position as output, that another docking components then can
take as an input.

The attributes to control the color bar module ColorLegend are the po-
sition, the height, the width and some attributes that control its appearance.
The most important input attribute is the TypedSlot<VColormap> where
the color map to be visualized is connected.

The module for number labeling is called RangeHUD. It has an input at-
tribute for position and some attributes for configuration, like subdivision,
which controls the number of displayed values and an attribute for font size.
The main input attribute is a TypedSlot<Range> that defines the number
interval. To synchronize the height of the labeling ruler with the height of
the ColorLegend an additional input slot height is connected.

Figure 5.15 shows the graphical result of a ColorLegend connected by
position and height to a RangeHUD. Figure 5.16 shows the necessary Vish
network. Here, the connections described above are illustrated. A color map
module is connected to the ColorLegend and a range module is connected
to the RangeHUD. A Point2D module is connected to the ColorLegend mod-
ule controling the overall position of the two HUD modules. RangeHUD is
connected to ColorLegend by position and height, as stated above.

5.5.5 Multiblock Outlines

During development of algorithms dealing with curvilinear multi-block
datasets it became necessary, especially for visual debugging, to display the
boundaries of all or some selected multi-blocks.

Thus, I added a rendering module that iterates over the Fiber Grid frag-
ments of a dataset and extracts and renders the outlines of a multi-block
dataset. Attributes are provided to control the transparency and color of
the outlines. Later, a filter was added, such that only those multi-blocks are
drawn that had a UniGridMapper object associated, section 5.4. Figure 5.17
shows an example of 2088 curvilinear multi-blocks.

10head up display
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Figure 5.16: Example network showing connections between modules needed
to display a color legend.

Figure 5.17: Example of displaying 2088 multi-blocks by using the
Display/Blocks module. The rendering module extracts the outline for
each multi block and renders all outlines using illuminates lines.



Chapter 6

Computation and Visualization

The first approach for computing and visualizing integral lines that was im-
plemented was a short all-in-one Vish module. It received a procedural vector
field as input. Streamlines were computed using a simple Euler integration,
as described in section 6.2. Initial seed points were located on a fax in the
xy-plane and could be moved around. Also the line rendering was done in
the same module.

It took me just four days to implement this 400 lines of code Vish module
and I learned a lot about the software environments and the requirements
for integral line visualization. Now it can be found in the tutorial section of
Vish: SimpleStreamline.cpp.

I recognized that the flexibility of the basic approach can be increased
by separating the whole process into small tasks. The visualization process
should be split into three basic modules:

� Define seeding geometry, or initial conditions.

� Do the integration.

� Render integration lines.

Thus, for all of these module types different modules could be implemented
and assembled like building blocks according to the requirements of the vi-
sualization.

This chapter first describes modules that were developed for defining the
seeding geometry, then introduces the implemented computation modules
and finally presents a rendering module for integration lines.

99
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6.1 Defining Initial Conditions for Integral

Lines

6.1.1 Initial Positions, Seed Points

The first point distribution module I implemented created some simple ge-
ometric point distributions like points on a line or points on a circle and it
used pure Vish attribute connections to transport a std::vector<point> to
the now separated computation module.

For data transport, a new attribute type was introduced to be used in the
network by providing VValueTraits as described in section 5.2 accordingly.
Listing 6.1 shows the source code for the attribute introduction.

Listing 6.1: Emitter Points Attribute

1 namespace I n t e g r a l L i n e s
2 {
3 struct EmitterPoints
4 {
5 std : : vector<point> V e r t i c e s ;
6 } ;
7 } //namespace In t e g r a lL i n e s
8

9 namespace Wizt
10 {
11 template <>
12 class VValueTrait< : : I n t e g r a l L i n e s : : EmitterPoints >
13 {
14 public :
15

16 stat ic bool setValueFromText ( : : I n t e g r a l L i n e s : : EmitterPoints&i ,
17 const string & s )
18 {
19 return fa l se ;
20 }
21

22 stat ic string Text ( const : : I n t e g r a l L i n e s : : EmitterPoints&e )
23 {
24 std : : string s ( ”” ) ;
25 std : : stringstream tmp ;
26

27 i f ( e . V e r t i c e s . s i z e ( ) > 0 )
28 {
29 tmp << e . V e r t i c e s . s i z e ( ) << e . V e r t i c e s [ 0 ]
30 << e . V e r t i c e s [ 1 ] << e . V e r t i c e s [ 2 ] ;
31 s = tmp . s t r ( ) ;
32 }
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33 return s ;
34 }
35 } ;
36 }//namespace Wizt

First, the new type used for an attribute connection is encapsulated in a
new class: struct EmitterPoints. It contains a standard std::vector of
3D space points. Now, a new specialization of the VValueTraits for the new
type is required. It contains two important functions to convert the data into
text and vice versa. The setValueFromText function of the VValueTrait<

::IntegralLines::EmitterPoints > class is not needed here.
What is important is the Text function. Here, data is converted to text.

The text string is used in the Vish network to trigger updates from connected
modules. The created string of EmitterPoints contains the number of points
and just the coordinates of the first point. Whenever the number of the
points or the coordinates of the first point change, the module connected to
an output of type EmitterPoints will execute its update function.

The next step was to use the Fiber data model to store the created points
since they have all characteristics of a Fiber Grid object. So, such an object
was stored into a Fiber Bundle. For data access to further modules a handle
to the Fiber Grid was provided.

Later a second module was added that creates randomly distributed 3D
space points inside a defined 3D volume.

Geometric Point Distributions

The geometric point distribution module creates a Fiber Grid of simple ge-
ometric shape. Namely: point, line, rectangle, circle, ellipsoid, uniform rect-
angular grid, circular grid, sphere and cube.

The shape can by controlled by two scaling parameters that stretch the
shape in one of two axes and by two parameters controlling the subdivision in
each axis direction. Figure 6.1 shows all possible shape types with a certain
set of parameters.

The position and the rotation of the shapes are controlled by input pa-
rameters into the module and are connected to a Vish Point3D and Vish
Rotor module.

An example network of the Vish network that just draws some points
from figure 6.1 is shown in figure 6.2.

To transform the created points two handles were added. One for trans-
lation, a 3D space point defining the origin of the shape and one for rotation,
a rotor.
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Figure 6.1: Simple geometric shapes created with the point distribution
module. Paramters: height = 0.5, length = 1.0, height subdivs = 5,
length subdivs = 10. Types from left to right and top to bottom: point, line,
rectangle, circle, ellipsis, rectangular grid, circular grid, sphere and cube.

Listing 6.2 shows some simplified source code of the module. The class

pointsShapes is derived from VObject making it a Vish module. It gets the
input control parameters via TypedSlots and provides a GridSelector of a
Fiber Grid as output via VOutput.

Listing 6.2: Geometric Point Distribution

1 class PointsShapes : public virtual VObject
2 {
3 public :
4 TypedSlot<double> Length ,
5 Height ;
6 TypedSlot<int> LengthSubDivs ,
7 HeightSubDivs ;
8 TypedSlot<point> Pos ;
9 TypedSlot<rotor> Rotation ;

10 TypedSlot<Enum> EnumType ;
11

12 VOutput<Grid> myGrid ;
13

14 PointsShapes ( const string & name , int p ,
15 const RefPtr< VCreat ionPre ferences > & vp )
16 : VObject( name , p , vp )
17 , Length ( this , ” l ength ” , 1 . 0 )
18 /* . . . some more TypedSlot i n i t i a l i s a t i o n s . . . */
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19

20 , EnumType( this , ” type ” , Enum( ” Point ” , ” Line ” , ” Rectangle ” ,
21 ” C i r c l e ” , ” E l l i s p o i d ” , ” RegularGrid ” ,
22 ” Circu la rGr id ” , ” Sphere ” , ”CubeGrid” ) )
23 , myGrid ( s e l f ( ) , ” e m i t t e r p o i n t s ” , GridSelector ( ) )
24 {
25 LengthSubDivs . s e tProper ty ( ”max” , 100 ) ;
26 /* . . . s e t some more s l o t p r o p e r t i e s . . . */
27

28 i f ( attachUniqueObject ( Pos ) < 0 )
29 {
30 AttachErrorCode AC = attachNewObject ( Pos ,
31 name + ” p o s i t i o n ” ) ;
32 i f ( AC<0 )
33 p r i n t f ( ” p o s i t i o n : %s \n” , AttachErrorCodeMessage (AC) ) ;
34 }
35 Pos−>AllowAutoConnection = true ;
36 /* . . . s im i l a r code f o r automatic ro to r module c r ea t i on . . . */
37 }
38

39 ˜ PointsShapes ( ) {}
40

41 o v e r r i d e bool update ( VRequest&R, double p r e c i s i o n ) { . . . }
42 } ;

The constructor of PointsShapes is used to a constrain data ranges of
several input parameters, see line 25. Also, standard modules that should
be connected to input slots can be created automatically. For example, the
standard 3D space point creation module can be automatically connected to
the TypedSlot<point> Pos, see line 28 to line 35.

If the user in Vish creates a new geometric point distribution module the
modules for controlling the origin and rotation are created and connected
automatically to the point distribution module.

All computation and creation is done inside the update function. Here,
all slot parameters are read first and dependent on them, a vector or points
is computed. Finally, these points are stored in a Fiber Grid. Listing 6.3
shows how this is done.

Listing 6.3: Geometric Point Distribution

1 bool PointsShapes : : update ( VRequest&R, double p r e c i s i o n )
2 {
3 /* . . . input read . . . */
4 /* . . . po in t s computed in t o vec tor<point> S ta r tPo in t s . . . */
5

6 BundlePtr BP = new Bundle ( ) ;
7 Slice & S = BP[ 0 .0 ] ;
8
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9 string grid name = Name( ) + ” P o i n t D i s t r i b ” ;
10 Grid & PointGrid = S . newGrid ( grid name ) ;
11

12 Skeleton & PointVer t i c e s = PointGrid . makeVertices ( 3 ) ;
13 RefPtr<Chart> myCartesian = PointGrid . makeChart (
14 typeid ( CartesianChart3D ) ) ;
15

16 Representation&C ar t e s i a nVe r t i c e s = Po in tVer t i c e s [ myCartesian ] ;
17 RefPtr<Field> Coords = Ca r t e s i an Ver t i c e s [ FIBER POSITIONS ] ;
18

19 typedef MemArray<1, point> CrdsA t ;
20 RefPtr<CrdsA t> CoordsData = new CoordsArray t (
21 Star tPo in t s . s i z e ( ) ) ;
22

23 MultiArray<1,point > & Crds1 = *CoordsData ;
24 {
25 for ( i ndex t i =0; i < Star tPo in t s . s i z e ( ) ; i++ )
26 {
27 MultiIndex<1> n( i ) ;
28 Crds1 [ n ] = Star tPo in t s [ i ] ;
29 }
30 }
31 Coords−>s e tPe r s i s t en tData ( CoordsData ) ;
32

33 GridSelector GS( grid name , BP ) ;
34 myGrid << R << GS;
35 }

During the development the idea arose to use a Fiber Grid object handle
instead of the Point3D attribute for defining the translation. A minor change
in the point distribution module made it possible to create the shapes at all
the 3D points of the input grid. So every point of the Fiber Grid was an
origin to the created shape. Thus, complicated point distributions could be
created in a recursive fashion by combining more point distribution modules
one after the other.

For example, the first point distribution module would create a line of
points and output the Fiber Grid. A second point distribution module would
take this as an input grid and around each point of the line would create a
small circle of points.

Later this recursive creation functionality was identified to be a pure
Fiber Grid operation and was thus extracted into an own module only
operating on Fiber Grid objects. The operation was called Grid Convolu-
tion and is described in detail in section 6.1.1.
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Figure 6.2: Vish network for drawing points of a geometric point distribu-
tion. The modules PointDistributionrotation and Point3 create a point and
a rotor which are input into the distribution module PointDistribution. The
distribution module creates a Fiber Grid which is output into the module for
drawing the vertices.

Random Point Distribution

The random point distribution creates seed points in a certain volume which
are randomly placed in space. One parameter controls the number of points
generated and one a random seed. There are two ways how the dimensions
of the volume can be controlled.

Firstly, a radius parameter can be used that specifies the length of a cubic
volume, see figure 6.3.

Secondly, a Fiber Grid object can be connected instead. The bounding
box of this objects then defines the size of the volume. If the Fiber Grid
nests a Fiber Scalar Field it is possible to filter the created random points
by a certain scalar value range. In that case, the scalar value is evaluated
at each random point and is checked against the given range. If the value is
outside the range, the point is clipped.

Figure 6.4 shows some clipped random points by clipping against the
pressure value, revealing some structure of a mixing ventilator in the center
of the data set.

During the use of the clipping functionality it was recognized that this
feature could be taken further and used in other aspects as well. Making it
possible to sample any given Fiber Field on an arbitrary other Fiber Grid
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Figure 6.3: Random point distribution in a volume controlled by the radius
parameter.

would open a range of new visualization possibilities in a very flexible way.
For example, one could compute an isosurface, which is handled as a

Fiber Grid object, of a scalar field and sample a second scalar field onto the
isosurface. Then, the values of the second scalar field could be visualized
via a color map on the isosurface. So one could, for example, analyze a
temperature on a zero pressure isosurface. First Steps implementing the
a general field on grid evaluator module were started but still have to be
completed.

Listing 6.4 shows the class header of the random point distribution.
It is a Vish Module by deriving from VObject. The class gets a Fiber
Grid handle and inherits functionality to extract all Fiber Grid information
by being derived from Fish<Fiber::Slice>, Fish<Fiber::Skeleton> and
Fish<Fiber::Grid>. To equip the module with an additional Fiber Field
handle (for the clipping scalar field) a TypedSlot<Fiber::Field> is added
as an attribute. Additionally the class is derived from StatusIndicator

which enables some string output inside the GUI of the module. The output
is a new Fiber Grid object which is stored in the Fiber Bundle of the input
grid.

Listing 6.4: Random Point Distribution

1
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2 class RandomPointDistribution : public virtual VObject ,
3 virtual public Fish<Fiber : : Slice >,
4 virtual public Fish<Fiber : : Skeleton>,
5 virtual public Fish<Fiber : : Grid>,
6 public StatusIndicator
7

8 {
9 public :

10 TypedSlot<double> Radius ;
11 TypedSlot<Range> CutRange ;
12 TypedSlot<int> Seed , NumberOfPoints ;
13 TypedSlot<Enum> CutOff ;
14

15 TypedSlot<Field> CutField ;
16

17 VOutput<Grid> myGrid ;
18

19 RandomPointDistribution ( const string&name , int p ,
20 const RefPtr<VCreat ionPreferences>&vp )
21 : VObject(name , p , vp )
22 , Fish<VObject>(this )
23 , StatusIndicator ( this )
24 , Radius ( this , ” rad iu s ” , 5 . 0 , 1)
25 , CutRange ( this , ” range ” , Range( 0 , 1 ) )
26 , Seed ( this , ” seed ” , 0 , 1)
27 , NumberOfPoints ( this , ” n rpo in t s ” , 30)
28 , CutOff ( this , ” c u t o f f ” , Enum( ” o f f ” , ”on” ) )
29 , CutField ( this , ” f i e l d ” )
30 , myGrid ( s e l f ( ) , ” e m i t t e r p o i n t s ” , GridSelector ( ) )
31 {
32 Seed . se tProper ty ( ”max” , 1 0 0 ) ;
33 NumberOfPoints . s e tProper ty ( ”max” , 20000) ;
34 NumberOfPoints . s e tProper ty ( ”min” , 1 ) ;
35 }
36

37 ˜ RandomPointDistribution ( ) {}
38

39 o v e r r i d e bool update ( VRequest&R, double p r e c i s i o n ) { . . . }
40 } ;

Grid Union, Convolution and Transformation

During the work on the seeding modules and this idea of grid convolution
which could be done as an operation only on grid objects thoughts came
up concerning other possible operations that could be done only on Fiber
Grids. Here, I present three operations.

The most basic idea was to create a module to unify or concatenate given
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Figure 6.4: Random point distribution in a volume. A scalar field and a
range was used to clip the points.

grids. A simple module would take two different Fiber Grid objects as input
and output the union as one unified grid. Figure 6.5 illustrates the operation.

Especially when creating seed points this is another tool that widens the
range of shapes that can be generated, such as by combining the results of
two geometric point distributions, like a circle and a line, in one grid object.

I extracted the grid convolution from the old geometric point distri-
bution module and identified it to be a powerful tool for creating complex
point shapes. The convolution module takes two grid objects as input and
outputs a new grid. The output grid is the result of a copy and translation
process. One of the input grids is copied and translated from its origin po-
sition (0.0, 0.0, 0.0) to the position defined by the first point of the second
grid. This process is then repeated for all points of the second grid. Figure
6.6 illustrates the operation.

It was recognized that the convolution is symmetrical. It yielded the
same result when switching the two input grids. This was not estimated but
became clear after some analyses.

When applying the operation several times with different grid objects,
complex shapes can be created. For example, to create circles of lines forming
a circle again needs three grid objects and two convolution operations, see
figure 7.10.
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Figure 6.5: Unifying Grids results in a new combined Grid. Left: Schematic
illustration of the Vish module. Input are two Fiber Grid objects and output
is a unified grid. Right: Visualization of the union operation on two grid
objects.

Figure 6.7 illustrates another example of multiple convolution. Here, it
is used to create a rectangular shape from two lines which is then again
convolved along a circle, taken from [1], also included in appendix C.

A nice extension would be to add a rotation alignment when doing the
copy process. In this case the carrier grid would have to provide a vector
for the direction and a second vector for defining the roll. The to-copy-grid
would have to provide the two corresponding vectors, but would have to do
so for the whole grid object. The z-axis and y-axis could be used intrinsically.

Having such a rotation alignment implemented one could, for example,
convolve shapes along a line and keep the rotation such that the copied grid
always stays orthogonal to the line direction, similar to an extrusion surface
in frequently used in 3D modeling.

As a first approach the transformations for changing position and ro-
tation of the shapes was done directly in the geometric point distribution
module. This was extracted into a separate module, since then it can be
reused on all possible Fiber Grids. Modules for grid object creation like a
point distribution now generate objects around the coordinate origin as its
center. The grid object can then be translated by using the transformation
module afterwards.

The transformation module takes a Fiber Grid object as input and a
tvector for translation, a tvector for scaling and a rotor for rotation.
Output, again, is a grid object.

Besides, the module can be used to create a copy of the original grid,
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Figure 6.6: Grid convolution results in a new Grid. Left: Schematic illus-
tration of the Vish module with two Fiber Grid inputs and one grid output.
Right: Visualization of the convolution process.

a) b) c) 

d) e) 

Figure 6.7: Using two convolution operations to create seed geometry.
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Figure 6.8: Seeding points created on a rectangular shape by a geometric
point distribution module are transformed and copied several times by one
grid transformation module. Re-applied scaling and positing creates a pyra-
mid grid.

and furthermore it allows multiple copies with re-applied transformations.
For example, when the grid object is scaled by 1.2 in x-direction and three
multiple copies are generated, the copies have the scalings 1.2, 1.4 and 1.6.
Similar rules apply to the other transformations, translation and rotation.

Thus, the module provides another basic tool to generate complex point
distributions. Figure 6.8 shows multiple copies of a rectangle with the re-
peated translation and scaling, forming now a whole pyramid.

6.1.2 Defining Initial Directions

To solve second-order differential equations, like the geodesic equation, it
is necessary on top of this to specify an initial direction besides the initial
position. Using the Vish environment it develops naturally to define initial
directions as a Fiber Field of vectors on the Fiber Grid object used for
defining the initial positions.

Grid Subtraction

A direction vector is simply computed by a vector subtraction. This led to
the idea of defining the same operation on grid objects by subtracting all
vertices of one grid from the vertices of the other grid. The computed Fiber
Field is stored to the base grid, where the vectors are pointing from.

The following restriction applies to the module: The numbering of the
vertices of the two grid objects must be compatible as well as the number of
vertices must be the same. Figure 6.9 illustrates the operation.
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Figure 6.9: Subtracting grid objects results in a vector field. Left: Schematic
illustration of the Vish module. Two Fiber Grid objects are input and one
Fiber Field object is output. Right: Illustration of the subtraction. Con-
sistent numbering of vertices in both grids is assumed as indicated by the
number labels.

The module provides two parameters. One to enable the normalization
of the vectors and one for scaling the vectors by a scalar factor. Scaling is
done after normalization. So when normalize is yes and scale is 2.5, all
vectors have a length of 2.5.

All of the presented modules were utilized to create the different kinds of
seeding geometries and vector fields for the visualizations shown in chapter
7. For some seeding geometries up to five of the basic seeding modules were
combined.

For example, the tube-like seeding of figure 7.40 was created using two
geometric point distributions (a line and a circle) that were combined by a
grid convolution, then copied and offset by a grid transformation and finally
these two grid were subtracted to yield the vector field for seeding the geodesic
computation module.

6.2 Computation

The following section describes the computation and my implementation of
streamlines and geodesics. The code structure was re-factored several times,
finally yielding the geodesic module. Here, I describe the evolution process
as it illustrates important key features of the current solution.

As mentioned in section 6.1.2, the whole task of the visualization is split
into modules. Seeding points and directions are defined using Fiber Grid
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and Fiber Field objects. The first computation module I implemented was a
streamline module. The input was a vector field describing the velocity of a
fluid and the seeding point.

The update function first did the data access on the Fiber Bundle
input objects. Then, a main loop solved the differential equation step-
ping along each streamline after another. It used the get function of
LocalFromWorldPoint, see chp:interpol. Finally, a Fiber Grid object
of lines was output.

I recognized the advantage when adding more data to the line grid as Fiber
Fields. This information was used for rendering and coloring the streamlines
in the rendering module. The interpolated vectors and the magnitude1 were
added as fields to the line grid object. Later, all necessary information that
would be needed to interpolate any other data field on the lines was added
as well. Local coordinates and fragment IDs were now also stored as fields
on the stream line grid.

Before implementing the module for geodesic computation the stream-
line module was analyzed and several code parts were identified that were
also applicable to the geodesic module. Also other types of integral lines
could reuse this code. Thus, I implemented a template base class for general
integration lines. The parameters to control the computation are:

� Input field

� Input emitter grid (and field)

� Line length

� Step size

� Type of solving the differential equation

� Flags for adding additional Data

I implemented the template class IntegralLines over the two template pa-
rameters FieldType and LineType. The FieldType specifies the type of the
data field that is used to compute the integral lines. In case of a stream-
line it is a tvector for a vector field and in case of a stationary geodesic
it is metric33 for the tensor field. The LineType is necessary since differ-
ent integral lines may be computed on the same FieldType. For example,
a path-line would have the same FieldType as a streamline but a different
LineType. The LineType is a Type Trait as described in section 3.1.

1Eukildean norm
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Figure 6.10: Illustration of a line integration module showing input connec-
tions at the top and the output connection at the bottom. The top left
input field represents the connection to the field data and the right field/grid
connects to the seeding data.

Listing 6.5: The definition of the template class IntegrationLines. The
module is the basis for different kinds of integral lines in Vish.

1 template<typename FieldType , typename LineType>
2 class I n t e g r a l L i n e s : public virtual VObject ,
3 public virtual Fish<Field>,
4 public StatusIndicator
5 {
6 /* . . . */
7 TypedSlot<Grid> StartGr id ;
8 TypedSlot<Field> S t a r t F i e l d ;
9

10 TypedSlot<double> LineLength ;
11 TypedSlot<double> StepS ize ;
12 TypedSlot<double> Sca l e ;
13

14 TypedSlot<Enum> IncludeData ;
15 TypedSlot<Enum> IncludeMagnitude ;
16 TypedSlot<Enum> UseDop853 ;
17

18 VOutput<Grid> myIntegra lL ines ;
19 /* . . . */

The Vish module is equipped with an input field handle, line 3, and has
input handles for the initial condition, line 7 and line 8. If the StartField

member is connected, the corresponding grid objects to define the positions is
extracted for StartField as well. The StartGrid is overridden in that case.
LineLength and StepSize control the length and the interval step length of
the integral line. StepSize is overridden when an adaptive solver is used for
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integration. The enumerations in line 13 and line 14 flag if additional data
should be stored as fields on the output grid. UseDop853 switches between
first order Euler and adaptive 8th order Runge Kutta integration.

It follows an overview of the tasks done in the update function:

1. Get input field information

2. Get emitter grid or emitter field information

3. Create grid output name and check if re-computation is necessary

4. Create automatic seed points if no emitter grid is available

5. Do the integration

6. Bake a new Grid object that carries the actual lines

All these tasks are the same for streamlines and geodesics. Besides operating
on different types of data, the only task that has to be specialized for each
LineType is task 6, the actual integration.
Task 1 and 2:
The handles to the Fiber Grid and Fiber Field objects are extracted by using
GridSelector and FieldSelector as described in section 5.2.2
Task 3:
Here it is checked if an output grid is already existent from an earlier compu-
tation. Since the line grid object is stored in the Fiber Bundle it can be tried
to get such a grid from the bundle, see line 4 in listing 6.6. If no valid grid
is returned a new one has to be computed. Otherwise it is checked whether
the input field, the line length, the step size, the connection to the input field
and the emitter grid are older than the coordinate field of the output grid.
If they all are older a return exits the update function of the module. If
one of these objects is younger than the found grid at the output it has to
be recomputed.

Listing 6.6: Source code that checks if the integration line grid at the output
has to be recomputed because of changes of the input field, the seed point
grid or module parameters.

1 string grid name = F i e l d S e l e c t i o n . Gridname ( ) + ” ” + Name ( ) ;
2

3 Info< Fiber : : Slice > A c t u a l S l i c e = F i e l d S e l e c t i o n . F ie ldSource ;
4 RefPtr<Grid> OutGrid = (* A c t u a l S l i c e . second ) ( grid name ) ;
5

6 i f ( OutGrid )
7 {
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8 i f (RefPtr<Field> OutCrds = OutGrid−>g e t C a r t e s i a n P o s i t i o n s ( ) )
9 {

10 i f ( InputToIntegrateF ie ld −>isOlderThan ( *OutCrds ) &&
11 LineLength−>age ( Context ) . isOlderThan ( *OutCrds ) &&
12 StepS ize −>age ( Context ) . isOlderThan ( *OutCrds ) &&
13 ConnectionAge ( ) . isOlderThan ( *OutCrds ) )
14 {
15 i f ( EmitterCoordinates )
16 {
17 i f ( EmitterCoordinates−>isOlderThan ( *OutCrds ) )
18 return s e t S t a t u s I n f o ( Context ,
19 ” Reusing prev ious computation ” ) ;
20 }
21 else
22 return s e t S t a t u s I n f o ( Context ,
23 ” Reusing prev ious computation ( no emit t e r ) ” ) ;
24 } } }

To equip a class with the aging functionality one derives it from the
Memcore::Ageable base class of the Vish environment. Field and Grid are
derived from Agable and can be compared to other ageable objects, see line
10 and line 17. The TypedSlot has an age as a member. Here, the Context

on which parameters depend is important, see line 11 and line 12.
Task 4:
If no emitter grid or emitter field is found a new emitter grid is created. The
positions of the seed points are then created along a diagonal of the bounding
box of the connected input data field.
Task 5:
The main loop uses a Type Trait2 class for integration, see listing 6.7 line 1.
The integrator has to be initialized by a handle to a container storing the
computed lines, a handle to a data field, a LocalPointFinder, the step size
for one integration step, a flag for the integration type, the number of steps
and the time when the integration is started.

Listing 6.7: Main loop

1 Line Integra to r <FieldType , LineType> I n t e g r a t o r (
2 Lines , F i e l d S e l e c t i o n ,
3 LocalPointFinder ,
4 s t e p s i z e , Dop ( ) ,
5 l i n e l e n g t h , time ) ;
6 int s t ep count e r = 0 ;
7

8 while ( h a s f i n i s h e d == fa l se && step counte r < l i n e l e n g t h )
9 {

2section 3.1
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10 /* . . . */
11 h a s f i n i s h e d = MyLineIntegrator . advanceBreadthFirst ( ) ;
12 s t ep count e r++;
13 }

The LineIntegrator template can be specialized if necessary. For
streamlines and geodesics this was not required and the general template
definition was sufficient. Calling the integrateBreadthFirst function, line
1, advances all integral lines by one integration step. This is repeated until
the LineLength is reached or all lines cannot be computed further, line 8.

1 template<class FieldType , typename LineType>
2 class L i ne I n t e g ra to r
3 {
4 /* . . . */
5 AtomicIntegrator<FieldType , LineType> AI ;
6 /* . . . */
7

8 bool advanceBreadthFirst ( )
9 {

10 unsigned end counter = 0 ;
11

12 i f ( dop )
13 AI . initDop853 ( Lines . s i z e ( ) ) ;
14

15 for (unsigned p = 0 ; p < Lines . s i z e ( ) ; p++)
16 {
17 /* . . . */
18 i f ( ! dop )
19 t e s t = AI . doEuler ( * In t eg ra t i onL ine , time ) ;
20 else
21 t e s t = AI . doDop853 ( * In t eg ra t i onL ine , time , p ) ;
22 /* . . . */
23 }
24 return ( end counter == Lines . s i z e ( ) ) ? true : fa l se ;
25 }
26 } ;

The LineIntegrator uses an instance of the AtomIntegrator to compute
the integration steps, see line 5. The AtomIntegrator is a Type Trait as
described in section 3.1 and has to be specialized and implemented for each
kind of integration line. The loop in line 10 iterates over all integration lines
of the Line container and advances each line by one step. If all lines cannot
be computed further, for example because they have stepped outside the data
field domain, advanceBreadthFirst returns true, otherwise false.
Task 6:
Now the computed lines have to be stored as a Fiber Grid object into the
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<class FieldType, class LineType>
LineIntegrator

bool advanceBreadFirst()

<class FieldType, class LineType>
AtomicIntegrator

bool doEuler( ... )
void initDop853(...)
bool doDop853(...)

AtomicDataBase

GeodesicIntegrator

bool doEuler( ... )
void initDop853(...)
bool doDop853(...)

<class FieldType, class LineType>
IntegralLine

override bool update( ... )

VObject

StatusIndicator

<class FiberType>
Fish

<Field>

<class FieldType, class LineType>
IntegralLine

bool update( ... )

Type Trait

Figure 6.11: UML diagram of class relationships for integral lines. The Vish
module IntegralLines uses a reference of LineIntegrator in the update
function. The LineIntegrator, finally, uses a reference of the Type Trait
AtomicIntegrator doing the integration. An AtomicDataBase is provided
to equip the AtomicIntegrator with data structures needed for computation
which are initialized by the LineIntegrator.

Fiber Bundle. Here, it is illustrated how the vertices, the connectivity and
the interpolated field data of the lines are stored. For a more detailed
description like storing other fields on the grid, chapter 4. First, a new Fiber
Grid object is prepared to be added to the Fiber Bundle of the input data
field for storing the lines:

1 RefPtr<Grid> In t eg ra lL ineGr id =
2 F i e l d S e l e c t i o n . theSourceBundle−>newGrid ( ) ;
3 Grid&LineGrid = * In t eg ra lL ineGr id ;

Creating the IntegralLineGrid using the newGrid function does not add
the grid to the Fiber Bundle. The grid is added later, when the data has
been baked completely. The pointer to the bundle is extracted from the
FieldSelector of the input data field. Thus, the grid will be added into the
bundle hosting the input data field.

Next, a new Fiber Field is created to store the vertex data of the integral
lines:

1 RefPtr<Field> L inePos i t i on s = new Field ( ) ;
2

3 RefPtr<MemArray<1, point> > Pts = new MemArray<1,point>(
4 MIndex ( nPoints ) ) ;
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5

6 RefPtr<Chunk<point> > data = Pts−>myChunk ( ) ;
7 std : : vector<point>&LineCoordinates = data−>s t d v e c t o r ( ) ;
8

9 i ndex t Pt = 0 ;
10

11 /* loop , s t o r e po in t s in 1D Array LineCoordinates */
12 LineCoordinates [ Pt ] = ( PointsPerLine [ ver ] ) . l o c a t i o n ;
13 Pt++;
14 /* . . . */
15 LinePos i t i ons−>s e tPe r s i s t en tData ( Pts ) ;

After creating a 1D MemArray of the correct size, line 1, its data access us-
ing a std::vector is prepared (line 6 and line 7 ). All vertices are then stored
sequentially in the MemArray, line 12. The Fiber Field ’s setPersistantData
function stores the data into the Field, line 15. Using this function ensures
that data is always kept in memory for caching. Here, room for improvement
remains. A more sophisticated mechanism might be appropriate.

The created data field of the vertex is now added to the grid object
LineGrid:

1 Skeleton&LineVer t i c e s = LineGrid . makeVertices ( 3 ) ;
2 RefPtr<Chart> myCartesian = LineGrid . makeChart (
3 typeid ( Fiber : : CartesianChart3D ) ) ;
4 Representation&Vert i c e sAsCarte s ian = LineVer t i c e s [ myCartesian ] ;
5 Vert i c e sAsCarte s ian . s e t P o s i t i o n s ( L inePos i t i on s ) ;

Since the field describes the vertices of the grid a skeleton of vertices is cre-
ated, line 1, the vertices being represented in Cartesian coordinates. Thus, a
corresponding Chart object is generated and used to create a Coordinate
representation. Finally, the Fiber Field LinePositions is added to the
grid by calling setPosition on the representation passing the field. The
makeVertices function is used for convenience substituting the creation of
a skeleton of 0 dimensionality and 0 index depth, chapter 4.

Next, the connectivity of the vertices is stored:

1 typedef MemArray<1, std : : vector<index t > > EdgesArray t ;
2 Ref<EdgesArray t> EdgesArray ( NumberOfLines ) ;
3 MultiArray<1, std : : vector<index t > >&Edges = *EdgesArray ;
4 i ndex t ve r t count ;
5

6 /* l oop over number o f l i n e s */
7 ver t count = 0
8 /* l oop over v e r t i c e s in one l i n e */
9 Edges [ l i n e ] [ ver ] = ver t count ;

10 ver t count++;
11
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12 Skeleton&LineEdges = LineGrid [ SkeletonID (1 , 1 ) ] ;
13 Representation&EdgesAsVert ices = LineEdges [ L ineVer t i c e s ] ;
14 EdgesAsVert ices . s e t P o s i t i o n s ( new Field ( EdgesArray ) ) ;

The connectivity is stored as a sequence of indices for each line running from
0 to the length of the line minus 1. The skeleton to describe an edge has a
dimensionality of 1, since an edge is a one dimensional object, and an index
depth of 1 since it requires one lookup to get to a vertex position, line 12.
The representation is on the line’s vertices, line 13. Finally a new data field
holding the edge data is created and added to the grid in line 14.

This is an example of storing data on the vertices where data is of template
type Fieldtype:

1 typedef MemArray<1, FieldType> LinesDataArr t ;
2 Ref<LinesDataArr t> LinesData ( nPoints ) ;
3 MultiArray<1,FieldType>&LineData = *LinesData ;
4 i ndex t ve r t count = 0 ;
5

6 /* l oop over v e r t i c e s */
7 LineData [ MIndex ( ve r t count ) ] = Line [ ver ] . data ;
8 ver t count++;
9

10 Vert i c e sAsCarte s ian [ Fieldname ( Context ) ]−>
11 s e tPe r s i s t en tData ( LinesData ) ;
12 Vert i c e sAsCarte s ian [ TangentialVectorFieldName ]−>
13 s e tPe r s i s t en tData ( LinesData ) ;

Data is stored in the same layout as the vertices. The same representation
VerticesAsCartesian is used specifying a name to identify the data field.
More than one name used. The data field is not created twice in the bundle,
just an alternative name ist stored.

Finally the baked Fiber Grid is inserted into the bundle at a certain Fiber
Slice:

1 c u r r e n t S l i c e . g e t S l i c e ()−> i n s e r t ( grid name , In t eg ra lL ineGr id ) ;
2 GridSelector GS( grid name , F i e l d S e l e c t i o n . BundleSource ( ) ) ;
3 myIntegra lL ines << Context << GS

Also, the a handle to the line grid is output at the VOutput of the integration
line module.

Next is the description of computation and implementation of stream-
lines and geodesics. Other integral lines can also be based on the provided
IntegralLines template classes: Implementing pathlines in vector fields or
gradient lines in gradient or scalar fields is straightforward with a minimal
effort in producing lines of code.
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Figure 6.12: Computing a streamline in a vector field describing the velocity
of a fluid. Starting at an initial position and following the direction of the
vector field by a certain step size solves the differential equation defining the
streamline curve.

6.2.1 Computing First Order Integration Lines

As described in section 2.3 streamlines are a common tool to visualize flow
in fluid dynamics. Streamlines are integral lines of first order, see equation
(2.75).

To solve the equation I first implemented a simple explicit Euler integra-
tion scheme. At the initial position the local coordinates of the vector field
are computed. These are then used to compute the vector at that position
by linear interpolation of the vector field.

According to equation (2.75), the vector at that position is equal to the
derivative of the streamline. A new point of the streamline can now be
computed by stepping into the direction of the vector. The step size is
controlled by the user. Figure 6.12 illustrates the process. Computation
starts at point 0 and continues following the vector field.

Implementation is done by specializing the AtomicIntegrator class pro-
vided by the integral architecture. A new type trait, the streamline, has to
be introduced as well:

Listing 6.8: Layout of the streamline specialization of AtomicIntegrator.

1 struct Streaml ine {} ;
2

3 template<>
4 class AtomicIntegrator<tvector , Streamline >:public AtomicDataBase
5 {
6 std : : vector<dop853<Tangent i a lD i f f e r en t i a lEquat i onL inea r >>Line In t s ;
7 /* . . . */
8
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9 bool doEuler ( std : : vector<In teg ra t i onPo int <tvector> >&IntLine ,
10 const double&time ) ;
11

12 bool in itDop853 ( const int number o f l i n e s ) ;
13

14 bool doDop853 ( std : : vector<In teg ra t i onPo int <tvector> >&IntLine ,
15 const double&time , const unsigned l i n e n r ) ;
16 } ;

The doEuler function finally implements the integration in a few lines of
source code. Here follows the main part:

Listing 6.9: Excerpt of doEuler for streamlines.

1 bool t e s t=LocalPointFinder−>get ( IntL ine [ l a s t i n d e x ] . l o ca t i on ,
2 l o c a l P o i n t ) ;
3 /* . . . */
4 IntL ine [ l a s t i n d e x ] . setData ( InterpolData , f l o a t i n d e x ,
5 FragName ) ;
6

7 Interpolate <3, tvector , L inear Ipo l <tvector> >
8 myField ( *ToIntArr , l o c a l P o i n t . f i r s t ) ;
9

10 tvector d i r = myField . eva l ( ) ;
11

12 NewPoint = IntL ine [ l a s t i n d e x ] . l o c a t i o n + s t e p s i z e * d i r ;
13 /* . . . */

First the local point coordinates are computed using the get function as
described in section 5.4. Then the vector is computed using interpolation
template classes provided by Vish. Finally the Euler step is done in line 12.
The new point is then stored on the integration line, which is the basis for
the computation of the next step. One line is represented by a vector of
IntegrationPoints, which is a simple template container class to collect all
information computed at one point of the integration line, here: point world
coordinates, the interpolated data (vector), the local coordinates, the id of
the multi-block.

The Euler method is fast if high accuracy of the solution is not important.
To achieve high accuracy one has to use a very small step size for integration.

“We have studied its convergence extensively in Section 1.7 and have seen
that the global error behaves like Ch, where C is a constant depending on
the problem and h is the maximal step size. If one wants a precision of, say,
6 decimals, one would thus need about a million steps, which is not very
satisfactory. ...” [34]

Runge-Kutta (RK) methods are based on Euler steps. More than one
Euler step is done and then combined into one RK step by several coefficients
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[34]:
Let s be an integer (the ”number of stages”) and a21, a31, a32, ..., as1, as2,

..., as,s−1, b1, ..., bs, c2, ..., cs be real coefficients. Then the method

k1 = f(x0, y0) (6.1)

k2 = f(x0 + c2h, y0 + ha21k1)

k3 = f(x0 + c3h, y0 + h(a31k1 + a32k2)

...

ks = f(x0 + csh, y0 + h(as1k1 + ...+ as,s−1ks − 1)

y1 = y0 + h · (b1k1 + ...+ bsks)

is called an s-stage explicit Runge-Kutta method (ERK) for (1.1).
Usually, the ci satisfy the conditions ...

ci =
i−1∑
j=1

aij. (6.2)

Such a method converges much faster to the correct solution. When
choosing the coefficient thoughtfully the error decreases exponentially:

||y(x0 + h)− y1||︸ ︷︷ ︸ <= Khp+1,

localerror
(6.3)

with p denoting the order of the RK scheme. A famous example for coeffi-
cients is “the” Runge-Kutta method of order 4. The coefficients are usually
given in tabular form:

0
c2 a21

c3 a31 a32
...

...
...

cs as1 as2 ... as,s−1

b1 b2 ... bs−1 bs

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 2/6 2/6 1/6

This is a 4 stage RK method and thus needs 4 evaluations of the function to
do one integration step which, in case of the streamlines, requires computing
local coordinates and doing the interpolation 4 times. Since the local error
bound decreases exponentially with the order, the step size can be increased
and, thus, much fewer total steps are needed for integration compared to
simple Euler integration.

Usually the analytically correct solution of a function is not known and
local errors cannot be computed correctly. Nonetheless, a local error can be
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<tvector, Streamline>
AtomicIntegrator

bool doEuler( ... )
void initDop853(...)
bool doDop853(...)

AtomicDataBase TangentialDi�erential-
EquationLinear

void Di�Eqn( ... )

<class Di�erentialEquation>
dop853

void initialize ( ... ) 
success_code advance( ... )
...

<T.D.E.L>

Figure 6.13: UML diagram of the streamline specialization of Atomic-

Integrator. The integrator uses the Dop853 template class to solve the
differential equation, which is defined by a function DiffEqn in a class used
as template type of the solver.

estimated by comparing RK schemes of different orders. Such local error
estimates can then be used to choose a step size adaptively, using as large
steps as possible while guaranteeing a low error bound.

Vish provides a solver call Dop853 that was rewritten from the original
FORTRAN algorithm found in [34]. It uses RK schemes of order 3 and 5
for error estimation and step size control. The actual step is finally of order
8, which is highly accurate. ”The performance of this code, compared to
methods of lower order, is impressive.” [34]

Figure 6.13 shows the class relationships of the integration class and the
Dop853 solver. Dop853 is a very generic solver suitable for systems of differ-
ential equations. Once set up with initial conditions the advance function is
called to compute one RK853 step.

The differential equations are defined in a class that is then used as a
template parameter of the solver class. Thus, the code is in-lined into the
solver at compile time and can be optimized well, while still providing high
code re-usability. Unfortunately, C++ does not allow to provide any kind of
interface or ”virtual function” for classes passed as template parameter.

For solving the streamlines, the differential equation was introduced by
following class:

Listing 6.10: Streamline differential equation for the Dop853 solver.

1 struct T a n g e n t i a l D i f f e r e n t i a l E q u a t i o n L i n e a r
2 {
3 /* . . . */
4 void DiffEqn ( int nEquations , r e a l s , const r e a l *q , r e a l *dq ds )
5 {
6 Eagle : : po int3 Q;
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7 for ( int k=0; k<3; k++)
8 Q[ k ] = q [ k ] ;
9

10 /* ge t l o c a l coords at Q, compute i n t e r p o l a t e d t v e c t o r DataDir */
11

12 for ( int i =0; i <3; i++)
13 dq ds [ i ] = DataDir [ i ] ;
14 }
15 } ;

Where line 13 represents the streamline differential equation equation (2.75).
The AtomicIntegrator holds a std::vector of dop853 solvers, one for

each streamline, see listing 6.8. The size of the vector is adapted in the
initDop853 function. The doDop853 function now first initializes the ac-
cording solver and then computes one step using the advance function of
dop853:

Listing 6.11: Excerpt of doDop853 for streamlines.

1 int l a s t i n d e x = IntL ine . s i z e ()−1;
2 dop853<Tangent i a lD i f f e r en t i a lEquat i onL inea r >&LI=Line In t s [ l i n e n r ] ;
3

4 i f ( l a s t i n d e x == 0 )
5 /* . . . i n i t s o l v e r LI */
6

7 switch ( LI . advance ( ) )
8 /* . . . */
9 case Fin i shed :

10 {
11 /* . . . */
12 IntL ine [ l a s t i n d e x ] . setData ( LI . DataDir , o l d l o c a l ,
13 LI . FragName ) ;
14

15 point NewPoint ( LI . f ( 0 ) , LI . f ( 1 ) , LI . f ( 2 ) ) ;
16

17 IntL ine . push back ( Integra t i onPo int <tvector >() ) ;
18 IntL ine [ l a s t i n d e x + 1 ] . s e tLocat i on ( NewPoint ) ;
19 /* . . . */
20 }

Depending on the line number the corresponding equation is retrieved,
line 2 and advanced in line 7. Here, all streamline line related data is stored
at the current point and the new point is pushed onto to the integration line.

After the algorithms have been implemented via the AtomicIntegrator

an instance of the template has to be created and a VCreator has to be
provided for Vish, as described in section 5.2:

Listing 6.12: Equipping Vish with a streamline module.
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1 typedef Fie ldL ine s : : I n t eg r a l L i n e s <tvector , F i e l dL ine s : : Streamline>
2 FlowTasse ls3 ;
3

4 stat ic Ref<VCreator<FlowTassels3 , AcceptList<Fiber : : Field> > >
5 MyFlowCreator ( ”Compute/ St reaml ine s ” , ObjectQual i ty : :EXPERIMENTAL) ;

Applications of the streamline algorithm can be found in section 7.1 and
section 7.2. Section 7.1 includes a comparison between Euler and Dop853
integration.

I chose to equip the integration line modules with these two different
integration methods to give the user the possibility to either compute very
fast but inaccurate results, to get an impression of the solution, or to compute
highly accurate results, when necessary.

6.2.2 Computing Second Order Integration Lines

With all the infrastructure available the next step was to implement
geodesics. First, spatial geodesics were considered, thus, neglecting possi-
ble time components of the tensor. The metric tensor g is then written in a
3× 3 matrix form.

In addition to the seed points, corresponding seed directions are necessary
to solve the second order differential equation. Instead of a seeding grid a
seeding field is connected to the integral lines Vish module, see figure 6.10.
The seeding grid is extracted from the Fiber Field in that case.

Again, the integral line template base classes are used and only the tem-
plate specialization of AtomicIntegrator have to be provided. As for the
streamlines, the simple explicit Euler and the adaptive Dop853 are imple-
mented.

To solve the geodesic equation, see equation (2.53), first the Christoffel
Symbols must be evaluated at the current position in the metric field given
in Cartesian coordinates.

A convenience function to retrieve the Christoffel Symbols was introduced
that uses a Christoffel Symbol class for computation. The convenience func-
tion was first implemented for use with the field type of a metric33 only.
Later it was rewritten such that the template parameter T is used as a field
type.

Listing 6.13: Convenience function to compute Christoffel Symbols

1 template<class T>
2 bool getChr i s to f f e lXYZ ( . . . )
3 {
4 bool t e s t = LocalPointFinder−>get ( CurrentPoint , l o c a l P o i n t ) ;
5 const Eagle : : po int3 &lp = l o c a l P o i n t . f i r s t ;
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6 /* . . . */
7

8 T g , g x , g y , g z ;
9

10 Interpolate <3, T, CubicIpol<T> > myField ( *ToIntArr0 , lp ) ;
11 g = myField . eva l ( ) ;
12

13 RefPtr<Fiber : : Field> f i e l d=F i e l d S e l e c t i o n . g e t C a r t e s i a n P o s i t i o n s ( ) ;
14 RefPtr<Fiber : : DirectProductMemArray<Eagle : : point3 ,3> >
15 FData = f i e l d −>getData ( ) ;
16

17 Eagle : : po int3 d e l t a = FData−>Delta ( ) ;
18

19 Interpolate <3, T, CubicIpol<T>, double ,
20 NoDelimiter<T>, 0 > myField x ( *ToIntArr0 , lp ) ;
21 g x = myField x . eva l ( ) ;
22

23 g x /= d e l t a [ 0 ] ;
24

25 /* . . . s im i l a r f o r y and z . . . */
26

27 C h r i s t o f f e l s = new Christo f fe lXYZ ( g , g x , g y , g z ) ;
28

29 /* . . . */
30 }

The getChristoffel function computes the local point using the
LocalPointFinder, see section 5.4, which is then used to do a cubic in-
terpolation of the metric tensor field, line 10. Vish’s interpolation classes
also can deliver derivatives. Line 19 illustrates how this is done. The last
template parameter of interpolate specifies the axis direction of the deriva-
tion (x direction is index 0). The derivative is computed in index coordinates
and thus has to be normalized by the interval length. Therefore, the interval
distance is retrieved in line 17. A direct product array is utilized. By now,
this technique is limited to uniform grids. For supporting other grid types
the code between line 13 and line 26 has to be extended.

The ChristoffelXYZ class stores the metric tensor and its x, y and z
derivatives and provides an operator to compute a component on demand:

Listing 6.14: Operator of ChristoffelXYZ to compute Christoffel Symbols
on demand.

1 const double operator ( ) ( const unsigned mu,
2 const unsigned nu ,
3 const unsigned lambda ) const
4 {
5 double gamma = 0 . 0 ;



CHAPTER 6. COMPUTATION AND VISUALIZATION 128

6

7 i f (mu > T : : Dims−1 | | nu > T : : Dims−1 | | lambda > T : : Dims−1)
8 return 0 . 0 ;
9

10 for (unsigned i = 0 ; i < T : : Dims ; i++)
11 gamma += g inv ( lambda , i ) * ( g d i f f [ nu ] (mu, i ) +
12 g d i f f [mu] ( nu , i ) − g d i f f [ i ] (mu, nu) ) ;
13

14 gamma /= 2 ;
15

16 return gamma;
17 }

Here, g diff are pre-computed differences of the derivatives of the tensor
and the tensor itself, section 2.1.7 for exploring the structure of the Christof-
fel Symbols. The g inv is the co-metric, the inverse of the metric. The
inversion is done using an explicit formula, see [42]. The operator works for
n-dimensional metrics. The dimension can be extracted from the template
parameter T, see line 10.

Listing 6.15: Convenience function to compute q̈.

1 template<class T> typename
2 Eagle : : Coordinates <typename T : : Chart t > : :vector getQddot (
3 RefPtr< Christof fe lXYZ<T> >& Gamma,
4 typename Eagle : : Coordinates<typename T : : Chart t > : : vector&q dot )
5 {
6 typename Eagle : : Coordinates<typename T : : Chart t > : :vector q ddot ;
7

8 q ddot . s e t ( 0 . 0 ) ;
9

10 for ( i ndex t lambda = 0 ; lambda < T : : Dims ; lambda++)
11 for ( i ndex t mu = 0 ; mu < T : : Dims ; mu++)
12 for ( i ndex t nu = 0 ; nu < T : : Dims ; nu++)
13 q ddot [ lambda ] −= (*Gamma) ( mu, nu , lambda ) *

14 q dot [mu] * q dot [ nu ] ;
15

16 return q ddot ;
17 }

This function heavily uses template functionality. The type of the re-
turned vector is extracted from the chart type of the Coordinates

template, see line 2 and line 5. In case of T=metric33 this is a
Eagle::PhysicalSpace::vector and in case of T=metric44 this is a
Eagle::STA::vector. The dimension is directly extracted from T and used
in the loop control.

Having the q̈ available the geodesic equation can be solved, for example,
using two Euler steps. One for computing the tangential vector q̇ and one



CHAPTER 6. COMPUTATION AND VISUALIZATION 129

for computing the next point x of the line. x0 and q̇0 must be given as initial
conditions:

q̇i+1 = q̇i + hq̈i
xi+1 = xi + hq̇i+1

(6.4)

The Euler is implemented in the doEuler function of the
AtomicIntegrator which is only partially template-specialized:

Listing 6.16: Layout of the partial geodesic specialization of
AtomicIntegrator, compare listing 6.8.

1 struct Geodesic {} ;
2

3 template<>
4 class AtomicIntegrator<T, Geodesic >:public AtomicDataBase
5 {
6 typedef Traum : : dop853<Geode s i cD i f f e r en t i a lEquat i on <T>>D i f f S o l v e r ;
7 typedef typename T : : Chart t Chart t ;
8 typedef typename Coordinates<Chart t > : : point point ;
9 typedef typename Coordinates<Chart t > : : vector tvector ;

10

11 std : : vector< D i f f S o l v e r > L i n e I n t e g r a t o r s ;
12 /* . . . */
13

14 bool doEuler ( std : : vector<In teg ra t i onPo int <T> >&IntLine ,
15 const double&time ) ;
16

17 bool in itDop853 ( const int number o f l i n e s ) ;
18

19 bool doDop853 ( std : : vector<In teg ra t i onPo int <T> >&IntLine ,
20 const double&time , const unsigned l i n e n r ) ;
21 } ;

The data field type is still a template parameter. Via the chart of the tem-
plate type local typedefs define a point and tvector.

The doEuler function utilizes the convenience functions for the compu-
tation of the Christoffel symbols and q̈.

Listing 6.17: Excerpt of doEuler for geodesics.

1 /* . . . */
2 RefPtr<Christof fe lXYZ<T> > Gamma;
3 T g cur r ;
4 pair<Eagle : : Phys ica lSpace : : point , string>l o c a l P o i n t ;
5

6 bool t e s t = F i e ldL ine s : : getChr i sto f fe lXYZ<T>( P curr ,
7 LocalPointFinder , F i e l d S e l e c t i o n , s t e p s i z e ,
8 Gamma, g curr , l o c a l P o i n t ) ;
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9 /* . . . */
10 tvector Qdot ;
11 i f ( l a s t i n d e x == 0 )
12 Qdot = getQdot<T>( I n t e g r a t i o n L i n e [ l a s t i n d e x ] . d i r e c t i o n ,
13 g cu r r ) ;
14 else
15 Qdot = I n t e g r a t i o n L i n e [ l a s t i n d e x ] . d i r e c t i o n ;
16

17 tvector Qddot = getQddot<T>(Gamma, Qdot ) ;
18

19 /* f i r s t Euler */
20 tvector Qdot next = Qdot + s t e p s i z e * Qddot * s c a l e ;
21

22 I n t e g r a t i o n L i n e [ l a s t i n d e x ] . setData ( g curr , l o c a l P o i n t . f i r s t ,
23 l o c a l P o i n t . second ) ;
24

25 point P new = I n t e g r a t i o n L i n e [ l a s t i n d e x ] . l o c a t i o n ;
26 tvector tmp = s t e p s i z e * Qdot next ;
27

28 /* second Euler */
29 P new += tmp ;
30

31 /* check i f i t i s a v a l i d s t ep and a v a l i d po in t */
32

33 I n t e g r a t i o n L i n e . push back ( Integra t i onPo int <T>() ) ;
34 I n t e g r a t i o n L i n e [ l a s t i n d e x + 1 ] . s e tLocat i on ( P new ) ;
35 I n t e g r a t i o n L i n e [ l a s t i n d e x + 1 ] . s e t D i r e c t i o n ( Qdot next ) ;

First, the Christoffel Symbols are retrieved in line 6 and used to compute q̈
in line 17. Two Euler steps are necessary to get the tangential direction and
finally the new point on the integration line, according to equation (6.4).

When doing the first Euler step an additional scale factor was introduced.
Applying a scale here is equivalent to scaling the metric tensor field by a scalar
factor, which was necessary for the MRI dataset presented in section 7.5.

Before storing the computed data in the IntegrationLine container it
is checked if the integration step is a valid one. If the new point is located
outside of the bounding box of the data field the line is stopped. Also, when
certain criteria regarding the change in length and angle to the previous Euler
step are contravened it is stopped, section 7.3.

For implementing the Dop853, again, a class describing the differential
equation has to be made available. Vish provides a base class for differential
equations of second order:

1 template<class T>
2 struct G e o d e s i c D i f f e r e n t i a l E q u a t i o n :
3 public Virtua lSecondOrderDi f fEquat ion <double>
4 void Accel ( r e a l s , const r e a l *x , const r e a l *v , r e a l *d2x ds2 )
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5 {
6 point Q;
7 tvector q dot ;
8

9 for ( int k=0; k < point : : Dims ; k++)
10 {
11 Q[ k ] = x [ k ] ;
12 q dot [ k ] = v [ k ] ;
13 DataDir [ k ] = v [ k ] ;
14 }
15 bool t e s t = F i e ldL ine s : : getChr i sto f fe lXYZ<T>( Q, LocalPointFinder ,
16 F i e l d S e l e c t i o n , s t e p s i z e , Gamma,
17 CurrentMetric , l o c a l P o i n t ) ;
18

19 i f ( ! t e s t ) return ;
20

21 tvector qdd = getQddot<T>( Gamma, q dot ) ;
22

23 for ( int k=0; k < point : : Dims ; k++)
24 d2x ds2 [ k ] = qdd [ k ] ;
25 }
26 } ;

This is similar to listing 6.10, but here the second derivative is computed,
see line 24. Again, the convenience functions are utilized.

The implementation of the doDop853 function is almost identical to the
one of the streamlines. The only difference appears in the initialization of
the doDop853 solver, since, also the tangential directions have to be set.

A typedef is used to initialize the AtomicIntegrator with T=metric33

and the VCreator is used to register the integration line module to Vish.

1 typedef Fie ldL ine s : : I n t eg r a l L i n e s <metric33 , F i e l dL ine s : : Geodesic>
2 GeodStationary3 ;
3

4 stat ic Ref<VCreator<GeodStationary3 , AcceptList<Fiber : : Field>>>
5 MyG33Creator ( ”Compute/ Geodes ics33 ” , ObjectQual i ty : :EXPERIMENTAL) ;

Figure 6.14 illustrates the class relationships of the classes regarding the
geodesic computation, similiar to figure 6.13.

Spatial geodesics can be used to visualize 3D metric tensor field data. An
application is stemming from medical imaging. Here, a diffusion tensor field
can be visualized using spatial geodesics, section 2.4 and section 7.5.

The implementation of 4D geodesics is identical to the spatial geodesic
implementation because the partial template specialization was utilized. One
difference arises in the initialization. The initial points and directions are
given in three space dimensions to the integration line module. The time
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<T, Geodesic>
AtomicIntegrator

bool doEuler( ... )
void initDop853(...)
bool doDop853(...)

AtomicDataBase

<T>
getChristo�elXYZ( ... )

GeodesicDi�erentialEquation

void Accel( ... )

<class Di�erentialEquation>
dop853

void initialize ( ... ) 
success_code advance( ... )
...

<class real>
VirtualSecondOrderDi�Equation

virtual void Accel( ... )  =  0
void Di�Eqn( ... )

<G.D.E>

<double><T>
Christo�elXYZ

 double operator()( ... )

<class Object>
ReferenceBase

<Christo�elXYZ>

<T>
getQdot( ... )

<T>
getQddot( ... )

Figure 6.14: UML diagram of the geodesic specialization of Atomic-

Integrator. The specialization is partial, thus making it applicable for
T=metric33 and T=metric44 tensor fields. The integrator uses the Dop853
template class to solve the differential equation, which is defined by a func-
tion Accel in a class derived from VirtualSecondOrderDiffEquation used
as template type of the solver. Christoffel symbols are encapsulated into a
separate class and the convenience function getChristoffelXYZ() is pro-
vided for their computation. Another convenience function computes q̈:
getQddot().
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component of the point is just set to zero but the time component of the
initial direction needs proper treatment.

The 4th parameter of the initial direction has to be computed dependent
on the metric tensor at its position to satisfy the geodesic requirement, see
equation (2.32) in section 2.1.7.

g(q̇, q̇) = 0 (6.5)

Written in txyz coordinates and using v := q̇:

gµνv
µvν = 0 (6.6)

After expansion:

gttv
tvt +gtxv

tvx +gtyv
tvy +gtzv

tvz +
gxtv

xvt +gxxv
xvx +gxyv

xvy +gxzv
xvz +

gytv
yvt +gyxv

yvx +gyyv
yvy +gyzv

xvz +
gztv

zvt +gzxv
zvx +gzyv

zvy +gzzv
zvz = 0

(6.7)

Collecting terms for vt and using the symmetry of g (gµν = gνµ) yields the
quadratic equation

(vt)2 + vt
B

A
+
C

A
= 0 (6.8)

with

A = gtt
B = 2(gtx + gty + gtz)
C = (gxxv

xvx + gyyv
yvy + gzzv

zvz) + 2(gxyv
xvy + gxzv

xvz + gyzv
xvz).

(6.9)

Finally, leading to the two possible solutions for vt

vt1,2 = − B

2A
+−

√(
B

2A

)2

− C

A
(6.10)

with vt1 < vt2.
The implementation in the AtomicIntegrator of the geodesics always

chooses the vt2 as valid initial condition.
This computation is encapsulated in the getQdot() function, see listing

6.17, line 12. It is only called for initialization. An additional feature was
added to the function. If the initial direction is set to (0, 0, 0) then the time
coordinate will be set to 1.0 and the geodesics will represent the motion of
particles initially being at rest instead of photons moving at the speed of
light.

Finally, the 4D geodesic module has to be registered to Vish:
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GlossyColorMapLines
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pointsize
ghostylines
ghostypoints
colorlength
...
     

ColorMap

Range

Field

Figure 6.15: Schematic illustration of the Vish line rendering module
GlossyColorMapLines. Primary input is the Fiber Grid connection. A
scalar field and colormap can be connected to texture the line.

1 typedef Fie ldL ine s : : I n t eg r a l L i n e s <metric44 , F i e l dL ine s : : Geodesic>
2 GeodStationary4 ;
3

4 stat ic Ref<VCreator<GeodStationary4 , AcceptList<Fiber : : Field>>>
5 MyG44Creator ( ”Compute/ Geodes ics44 ” , ObjectQual i ty : :EXPERIMENTAL) ;

The 4D stationary geodesics are verified in section 7.3 by visualizing a
Schwarzschild metric, see section 2.2, and used to explore the Kerr metric in
section 7.4.

6.3 Rendering Lines

For the rendering of lines a Vish rendering module was developed. The mod-
ule is based on the VBO technique and makes use of the caching mechanism,
as described in section 5.2.3.

A basic module for line rendering was already included in the Vish envi-
ronment. I introduced an enhanced module that allows to texture the lines
with any color-map driven by an arbitrary scalar Fiber Field stored on the
line Fiber Grid.

The module primarily takes a grid object as input to get the geometry
data, the vertices and connectivity, of the lines. Thickness of the rendered
lines and size of vertex points can be controlled by the parameters linewidth
and pointsize. Lines and points can be transparent (normal or additive).

If no scalar field is connected to secondaryfield, 1D texture coordinates
are computed based on the length of the line needed for texturing by a color-
map. If no color-map is connected a linear ramp between two user defined
colors is created, starting from green and going to red.
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GlossyColoMapLines

override <State> newState( ... )
override bool update( ... )
override void render(...)

VRenderObject

TimeDependent

GLTexture1DRampTexture

State

FieldState

DrawArraysMyRenderer 

Figure 6.16: Uml diagram of the line rendering module. An inner state class
is used that make data, extracted and computed in the update function,
available in the render function. Rendering is done using a class for ren-
dering data arrays (MyRenderer) utilizing VBOs, see section 5.2.3. A one
dimensional color ramp is created if no color-map is providing a texture. Vish
provies a GLTexture1D class for convenience. Textures and VBOs are cached
as described in section 5.3.

To color the line by a scalar field and color-ramp, a scalar field and a
color-ramp is connected to secondaryfield and colormap. An additional
range object can be connected as well (range) to scale and clamp the scalar
field range. A toggle between length based and scalar field coloring can be
adjusted, too (colorlength). Figure 6.15 illustrates the module connections
and parameters.

To enhance the perception of 3D curvature, highlighting or shading of
the lines was added based on OpenGL multi texturing. The highlighting
texture is blended over the color texture additively (glBlendFunc(GL ONE,

GL ONE)). The tangential vector of the line is used as a 3D texture coordinate
which is then transformed into a 1D coordinate by using a texture transfor-
mation matrix. The matrix basically does a transformation dependent on
the view direction, thus simulating a cos(φ) between the camera axis and
the tangential line direction. The look-up in the pre-sampled 1D highlight-
ing texture is added to the color of the line resulting in a shaded line. Lines
become highlighted when the tangential vector becomes perpendicular to the
camera view axis and diffuse when oriented parallel.

Figure 6.17 illustrates six different configurations of the line rendering
module, drawing the same line geometry.
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Figure 6.17: Same line geometry rendered with different settings in the line
rendering module GlossyColorMapLines. Top Left: Standard parameters.
Glossy lines of width 2. Top Mid : Rendering of points of the lines added.
Narrower lines (width 1) and bigger points (size 3). Top Right: Additive
lines and additive points of same width and size. Bottom Left: Color-map
still driven by length for texturing and big additive points. Bottom Mid:
Color-map driven by a scalar field, available on the line grid. Bottom Right:
Like bottom mid but with small additive points.
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Figure 6.16 shows the class dependencies of the rendering modules. The
update function extracts the line geometry and computes curvature and the
length parameter of the lines per vertex. Also, the scalar data field is ex-
tracted and normalized, so that it can be used as 1D texture coordinates
for the color map. All this data is stored in the inner state object and only
recomputed when the line geometry changes or other user input forces a
recompute.

The render function gets all data it needs for instant rendering from the
state object. The OpenGL calls for rendering the VBOs are encapsulated in
a renderer class, which in this case was extended in MyRenderer. Textures
and the VBO are cached in Vishs GLCache. Listing 6.3 shows some excerpts
on how this is done:

1 void GlossColorMapLines : : render ( VRenderContext&Context ) const
2 {
3 RefPtr<Fie ldState > S = getSta t e ( Context ) ;
4 i f ( ! S ) return ;
5

6 /* . . . */
7

8 RefPtr<ValueSet> RampValues = new ValueSet ( ) ;
9 RefPtr<RampTexture> LineTexture2 ;

10

11 try{
12 LineTexture2 = Context (*S ) ( this ) ( RampValues ) (TEXTURE( ) ) ;
13 }
14 catch ( const GLError&){}
15

16 i f ( ! LineTexture2 )
17 {
18 r g b a f l o a t t c1 , c2 ;
19 ColStart << Context >> c1 ;
20 ColEnd << Context >> c2 ;
21

22 LineTexture2 = new RampTexture (1 , c1 , c2 ) ;
23 LineTexture2−>e n l i g h t e n ( ) ;
24

25 Context [*S ] [ this ] [ RampValues ] (TEXTURE( ) ) = LineTexture2 ;
26 }
27

28 /* . . . and s im i l a r f o r g l o s s y h i g h l i g h t t e x t u r e . . */
29

30 /* . . . g e t module render parameters and s e t OpenGL s t a t e s . . . */
31

32 GlossyTexture : : Render LINERENDER(* LineTexture ,
33 Context . CameraSettings ) ;
34
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35 /* . . . */
36

37 RefPtr<ValueSet> myCacheableValues = new ValueSet ( ) ;
38 string VBOKey = ”” ;
39 RefPtr<VBO> myVBO;
40

41 try
42 {
43 myVBO=Context (*S−>V e r t i c e s ) ( typeid (* this ) )
44 ( myCacheableValues ) (VERTEXBUFFER( ) ,VBOKey) ;
45 }
46 catch ( . . . ) { }
47

48 i f ( !myVBO | | S−>reVBO)
49 {
50 RefPtr<MemBase> Pts = S−>Vert i ce s−>c r e a t e ( ) ;
51 RefPtr<VertexArray>
52 VA = GL : : F i e ldBuf f e r <VertexArray > : : c r e a t e ( Pts , true ) ;
53

54 myVBO=Context [*S−>V e r t i c e s ] [ typeid (* this ) ]
55 [ myCacheableValues ] (VERTEXBUFFER( ) , VBOKey) ;
56 myVBO−>c l e a r ( ) ;
57 myVBO−>append ( VA ) ;
58

59 i f ( S−>TexLength && ! ColorLen ( ) ) // use l e n g t h f o r c o l o r i n g
60 {
61 const int TextureUnit = 1 ;
62 RefPtr<TexCoordArray>
63 TCA = GL : : F i e ldBuf f e r <TypedTexCoordArray<double> > : :
64 c r e a t e ( TextureUnit , S−>TexLengthScaled , fa l se ) ;
65

66 myVBO−>append ( TCA ) ;
67 }
68

69 /* . . . s im i l a r f o r co lor−map and g l o s s y t e x t u r e . . . */
70

71 RefPtr<MyRenderer : : EdgesArray t> EA = S−>Edges−>c r e a t e ( ) ;
72

73 myVBO−>setRenderer ( new MyRenderer (
74 ConvertVectorArray<unsigned int , index t > : : convert (EA) ,
75 GhostL ( ) , GhostP ( ) , p o i n t s i z e , width ) ) ;
76 }
77

78 myVBO−>c a l l ( ) ;
79 }

First, the state object is retrieved. Then textures are prepared and stored
in an GLCache associated to the Context. If the extraction of the texture from
the cache fails, line 12, the ramp texture is created based on two color input
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attributes of the module, line 22, and stored in the cache. It is identified by
the state, the rendering module, a value set and a texture identifier, line 25.
The additive texture used for highlighting (GlossyTexture), is stored in the
cache similarly but using a different value set.

The texture matrix for the highlighting texture is computed by using the
inner class Render of GlossTexture, providing the texture and the actual
camera settings.

Next, the a vertex buffer object containing the vertex data is tried to be
extracted from the cache identified by the vertex data pointer, the rendering
module, a value set, a vertex buffer identifier and a vertex buffer key, line 43.
If this fails a new VBO has to be created, what is done in line 54. The VBO
is loaded with an VertexArray in a OpenGL compatible memory layout, in
line 57. The VertexArray is directly created from the Fiber Field data array
in line 51. This is a very efficient operation because of the array layout in
the Fiber Bundle library.

Next, texture coordinate arrays are created and loaded into the VBO
object, line 59 to line 67. The connectivity of the lines is retrieved from the
state, line 71, and the custom line renderer MyRenderer is set as a renderer
for the VBO object passing the connectivity and some rendering parameters.
Finally the VBO is drawn using the call function in line 78. Either it was
retrieved from the cache or created newly.

Using this caching technique most rendering calls retrieve the data out of
the cache. Parameter changes like point size or line width do not trigger a
creation of a VBO object because it is not necessary. Also, VBOs are reused
when a certain time step is revisited. When playing an animation in Vish
only the first run will require the creation of VBO objects. In the second
run of the same time interval these are all retrieved from the GLCache, with
all data cached in the graphics card memory.

Instead of using the texture matrix and texture blending the shading of
the lines could also be achieved using modern shading technology. In fact
there are lots of other possibilities to further enhance the rendering of lines
using OpenGL shaders.

Enhancements would include rendering transparent lines. Mapping a
certain scalar data field to transparency could be a good tool to visualize
certain characteristics of data. Rendering transparent lines would involve
sorting the lines when drawing, which is a non trivial problem since it has to
be done accurately enough and must be very efficient.

A nice extension would be to thicken the lines using a cylindric shape,
like extruding a circle along the curve. It would be interesting to connect
the thickness to some data. Scaling and squeezing could enhance visual
perception of data. When applying shape extrusion one could also blend
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between different shapes, like between a rectangular or star shape and a
circle dependent on input data.



Chapter 7

Applications

This chapter demonstrates the use of the implemented Vish modules de-
scribed above in different application domains.

The first application shows the computation of streamlines in an analytic
vector field sampled on an uniform grid. Here, accuracy and time measure-
ments verify the implemented differential equation solvers of streamlines.

The second application stems from an engineering application. It demon-
strates the that the streamline algorithm was formulated independent on the
underlying discretization grid structure and shows visualization features as
texturing the lines and seeding using different kinds of Fiber Grid objects.
A dataset containing vector and scalar field data describing the flow of a two
fluids in a stir tank are visualized.

The third application shows the computation of geodesics in the analyt-
ical Schwarzschild metric sampled on a uniform grid. It is used to verify
the computation algorithms and introduces visualization techniques for the
coordinate-acceleration. The Schwarzschild metric then is explored in the
xy-plane (2D).

The fourth application is an extension of the third and demonstrating
computation geodesics in the analytic Kerr metric sampled on a uniform grid.
It is explored in all three spatial dimensions and illustrates four dimensional
coordinate-acceleration.

The fifth application utilizes spatial geodesics in a medical context. Dif-
fusion tensor data is visualized stemming from a MRI scan of a brain. It
demonstrates the high re-usability of the implemented algorithms.

Besides the illustrations showing the visualizations of the different appli-
cations a schematic Vish network is shown for each application illustrating
the main modules in action, demonstrating flexibility and modularity of the
Vish approach.

141
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7.1 Visualizing Flow of CouetteFlow

The first application is the visualization of a vector field by streamlines of a
an analytically described field.

Since the integral line modules only apply to numerically provided data
the analytic vector field is sampled on a uniform grid in before. A three
dimensional uniform grid is used with a resolution of 32× 32× 32.

The vector field is given by the following equation, with r2 = x2 + y2 and
v = 0 if r2 < 1 or r2 > 4. The factors s and t are scaling factors. The field
is sampled around the coordinate origin in the interval (−2.1;−2.1;−2.1) to
(2.1; 2.1; 2.1).

v =

 − r2−2
r2 s y
r2−2
r2 s x

5t z

 (7.1)

The vector field is a modified Couette flow. In fluid dynamics the Couette
flow describes the velocity of a viscous fluid between the gap of two opposed
rotating cylinders. The vector field of the two dimensional Couette flow was
extended by a linear variation in the z-axis. This also is scaled by a parameter
dependent on time.

The analytic vector field is defined in a tube like shape, with z being the
axis of the tube. The characteristics of the vector field in the z = 0 plane are
illustrated on the left hand side of figure 7.1. The area where some velocity
is defined can be clearly seen, with the radius r having a value between 1.0
and 2.0. The vector magnitude is changing with the radius, having a high
value at the outer radius decreasing to zero and growing again by moving to
the inner radius. The direction of the vector changes from counter clockwise
orientation to clockwise orientation referring to the z-axis.

When looking at the y = 0 slice in figure 7.1, on the right hand side, the
vector dependency on the z-coordinate is illustrated. Vectors are oriented in
z = 0 plane when z = 0. If z > 0 the vectors are increasingly uplifted and if
z < 0 they are pushed down, according to equation (7.1).

The following figure tries to visualize these properties of the vector field
by using just one seeding geometry.
Figure 7.2 is seeded by a point forming a uniform grid and slicing by an angle
of 45 degree through the vector field volume. (Recognizing the properties is
much easier when realtime 3D camera navigation is possible.) The figure
shows the streamlines from the side and from the top. Magnitudes and
orientations can be seen.

Figure 7.1 and figure 7.2 are created using the same Vish module network,
which is illustrated in figure 7.3. It consists of four main parts. Modules to
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Figure 7.1: Couette flow visualized using streamlines. Top Left: Seed points
on the z = 0 plane form a starry shape. The magnitude and direction of the
vector field dependent of the radius can clearly be seen. Bottom Right: Seed
point on the z = 0 plane forming a rectangular grid. The area where the
velocity is defined and the magnitude of the vectors are illustrated. Small
magnitudes occur where streamlines get very short, see the center ring of the
disc. Right: Seed points on the y = 0 plane forming a uniform grid. The
greater the distance to z = 0 the more the vectors become lifted up or pushed
down.



CHAPTER 7. APPLICATIONS 144

Figure 7.2: Couette flow visualized using streamlines seeded a regular grid
rotated by 45 degree.

extract the vector field of the data bundle (cyan), a module to create a seeding
grid (grey), the streamline integration module (green) and the line rendering
module (yellow). To visualize a different data set the top node that delivers
the Fiber Bundle, the CouetteFlowDataCreator, has to be exchanged.

The GeomPointDistribution may be replaced by another seeding mod-
ule or even a whole subnetwork of nodes to create the seeding geometry.
Figure 7.12 shows a more complex network.

Figure 7.4 illustrates the contrary orientations and uplifted and pushed
down vectors very clearly. But it does not show the definition space of the
vector field. Here, four grid objects created by point distribution modules
where combined into one seeding grid. The circular shapes are shifted a bit
along the z-axis as that the streamlines escape the z = 0 plane.

The Couette flow vector field is a good test scenario to verify the im-
plemented streamline algorithms. Especially, a test comparing accuracy and
performance of the explicit Euler and the adaptive Runge Kutta of 8th order
yielded expected results.

To compare the integration methods I seeded one streamline at the po-
sition (1.0; 0.0; 0.0). Since the point is located in the z = 0 plane it should
not escape this plane. Also the vector field flows perfectly circular around
the center, the streamline should have the shape of a circle. First, I did
an integration using the Dop853 and adjusted the line length, or number
of integration steps, such that the streamline forms a circle. The endpoint
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Figure 7.3: Schematic Vish network used to create the visualizations
shown in figure 7.1 and figure 7.2. The vector field data is extracted
from the module that creates the bundle, by first selecting a grid object
and then a vector field (cyan). The seeding geometry is created using a
GeometricPointDistribution module (grey). The StreamlineIntegrator
does the computation and stores a grid of lines back into the bundle host-
ing the vector field and provides a grid handle for the rendering module
GlossyColorMapLines.

almost coincides with the start point, see top left of figure 7.5. There is no
noticeable gab between the starting line (green) and the ending line (red).

Then, I switched to Euler integration and choose a step size such that
the same number of steps would result in a similar circle as created by the
Dop853 integration, see mid top of figure 7.5. Then I decreased the step
size by half and then quarters until a visually similar circle was created.
All information regarding step number step sizes and integration times are
gathered in the following table1:

1Measurements were done in SVN Revision 1724 of Vish on a dell M1330 XPS latop
with 4GB RAM, Intel Core2 Duo T8300 @ 2.4Ghz and NVidia Geforce 8400M GS graphics
card. Compiled in Windows Vista 32 using gcc 3.4.2 (mingw special) in debug mode.
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Figure 7.4: Couette flow visualized using streamlines seeded by four point
distribution modules combined by three grid adder modules. The streamlines
of the inner circle flow in different circular direction compare to the outer
streamlines.
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Integration Steps Stepsize Overall Time Time per Step
[sec] [sec]

Dop853 1 154 - 0.406 0.0026
Euler 1 154 1.5 0.031 0.0002
Euler 2 92 0.75 0.015 0.0002
Euler 3 164 0.1875 0.031 0.0002
Euler 4 708 0.0469 0.14 0.0002
Euler 5 3090 0.01172 0.639 0.0002
Euler 6 12770 0.00293 2.278 0.0002

Dop853 2 474 - 1.139 0.0024
Euler 7 11350 0.01172 1.997 0.0002

When comparing the speed of Euler 1 and Dop853 1 the Euler 1 out-
performs the Dop853 1 by a factor of 13 but with an awful accuracy, as
illustrated. When decreasing the step size of Euler to get one good circle,
see bottom right of figure 7.5, now, the Dop853 1 outperforms the Euler 6
by a factor of 5.6.

Another comparison was based on Euler 5 and Dop853 1. They have a
similar integration time. Based on the step size the length was now adjusted
such that the streamline would flow around the axis for 4 times: Dop853 2
and Euler 7 in the table. The streamlines illustrated in figure 7.6. The bot-
tom left figure demonstrates how the Dop853 streamline still stays accurately
on the circle, while the Euler starts to spin outwards.

Thus, the Euler integration can be fast if accuracy is not important. The
Dop853 still provides good speed at high accuracy, as expected, section 6.2.1.
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Figure 7.5: Comparison of the integration methods Euler and Dop853. A
correct integration should yield a circle, like, when using Dop853 (top left).
An Euler integration with the same number of steps results in a spiral shape
(top mid). Decreasing the step size of the Euler integration finally yields a
circle but with a higher computation time than Dop853 (top right via bottom
left to bottom right). Data according to the illustration is gather in the table.

E
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Figure 7.6: Comparison of Euler 6, left, and Dop853 2, right, which have a
similar computation time. The streamline circles 4 times around the center.
However, accuracy is very different. A zoom to the start point, bottom
figures, illustrate how the Euler 6 spins outwards whereas the Dop853 2
stays accurately on the circle.

7.2 Visualizing Flow and Pressure in a

Stirred Fluid Tank

An application stemming from the Mechanical Engineering Department of
the Louisiana State University is the visualization of streamlines in a stirred
tank. The dataset was provided by Sumanta Acharya and Somnath Roy.

They computed the mixing of two distinct fluids in a stirred tank, which is
frequently used in chemical industries. The aim is the analysis of the mixing
behavior. If the mixing properties of the tank could be improved this would
be very interesting for chemical industries.

To capture the geometry of the stirred tank sophisticated methods were
used, making visualization of the results difficult or impossible with available
standard software, such as Tecplot [56] or EnSight [37]. 2088 curvilinear multi
blocks were used to discretize the computational domain by over 3 million
cells. Over 5000 time steps were produced during the simulation.

A rotating four bladed propeller induces the mixing in the cylindrical
tank that has vertical baffles mounted along its walls. Figure 7.7 illustrates
the geometry of the tank.

As a result of the large eddy simulation with “Immersed Boundary Meth-
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Figure 7.7: Stirred tank discretized by 2088 curvilinear blocks. The geometry
of the four vertical baffles as well as the rotating axis and the curvature of
the hemispherical bottom of the tank are modeled.

ods” the finite volume computation yielded a vector field describing the flow
of the fluids and a scalar field for pressure. Data was converted to F52 format
and could then be loaded via the Fiber Bundle library into Vish.

I used the data set to apply, test and develop my integration line con-
cepts for streamline seeding, computation and visualization and, especially,
to make the integration independent of the underlying grid data structure,
see FindLocalFromWorldPoint in section 5.4. The same algorithm can be
used for uniform and curvilinear grids. Other grid types are supported by
extending the FindLocalFromWorldPoint class. As soon as, for example
AMR support is added to the local point finder, the streamline module will
also work in AMR data.

The results of the collaborative work were shown at the CCT booth on
the Supercomputing conference in 2008, Austin USA, and finally yielded a
communication paper, that I presented at WSCG 2009 [53], in Plzen Czech
Republic, see [1] also included in appendix C. This formed a basis for further
work mainly done by Bidur Bohara and led to a second publication (journal)
at WSCG 2010, see [16], also included in appendix C.

The figures shown in this chapter illustrate different seeding strategies,
compare the integration methods and demonstrate the benefit of using the
Fiber Bundle model as a systematic data model. In combination with the
module separation approach, utilized in the Vish network, visualization fea-
tures were created that were not planned on purpose, but rather happened

2File mapping of the Fiber Bundle data model utilizing the HDF5 format, chapter 4.
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Figure 7.8: Euler integrated streamlines in the stirred tank dataset. 50 steps
are computed for each streamline. Thus, the length of the line indicates
the velocity of the fluid. Top: Streamlines were seeded using the a random
point distribution module. Though, the many “spaghetti” give no clearly
structured visualization several properties are illustrated over the whole vol-
ume. The flow is moving clockwise around a mid axis, see right, and moving
downwards close to the center and upwards at the tank boundaries.Bottom:
Random seed points were clamped by a value of the pressure field. The im-
ages show streamlines starting at high pressure in the lower part of the tank
flowing outwards to the borders. The rotating propeller of the stirred tank
causes the high pressure in the fluid, what is also shown in figure 7.13.
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“accidentally” during implementation.
Figure 7.8 gives an overall impression of the motion of the fluid by seeding

randomly in the stirred tank volume. The scalar pressure field is used to
extract regions of high pressure, see section 6.1.1.

Some time measurements were done to analyze performance behaviors of
the implemented algorithms. Figure 7.9 shows the setup that was used in
the stirred tank. Here, streamlines are seeded along a horizontal line on 12
seed points close to the center of the tank.

Time was measured during the first integration process, where all Uni-
GridMappers, used to speed up computation of local grid coordinates, have
to be created for each visited block, section 5.4.3. In a repeated computation
previously computed UniGridMappers are reused, leading to a speed up in
the repeated computation of the streamline.

Figure 7.9 shows only those curvilinear multi-block outlines a Uni-
GridMapper object has been created for.

Timings of Euler and Dop853 streamlines with a length of 50 and 500
steps were stopped and gathered in the following table3:

Integration Steps Steps Overall Time per Speedup
per Line Time [sec] Step [sec]

E50f 50 612 10.84 0.0177
E50c 50 612 0.80 0.0013 13.55

E500f 500 5343 39.78 0.0074
E500c 500 5343 6.506 0.0012 6.11
D50f 50 612 19.02 0.0307
D50c 50 612 10.70 0.0170 1.78

D500f 500 5147 131.10 0.025
D500c 500 5147 93.86 0.018 1.4

Following naming convention is used for the measurements: E stands for
Euler and D for Dop853. This is followed by the number of integration steps,
which is followed by f, denoting a first computation or c, denoting computa-
tion with all Unigridmappers of the visited blocks having been cached. The
speed up always refers to the first and cached computation times.

When comparing the timings of the Euler integration with respect to the
UniGridMapper initialization the speed up is about a factor of 10 (E50f/c
and E500f/c in the table). The difference (half) of the speed up comparing
the 50 and 500 steps lines could be the consequence of the increasing distance

3Measurements were done in SVN Revision 1724 of Vish on a dell M1330 XPS latop
with 4GB RAM, Intel Core2 Duo T8300 @ 2.4Ghz and NVidia Geforce 8400M GS graphics
card. Compiled in Windows Vista 32 using gcc 3.4.2 (mingw special) in debug mode.
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between integration lines. All lines start closely together. Thus, a point of
a streamline will probably be located in the same multi-block as a point of
a different streamline that was computed before. The UniGridMapper can
be reused in that case. However, with increasing integration the streamlines
move apart and such a reuse becomes more and more unlikely, resulting in a
lower speedup for long integration lines.

Comparing the same timings of the Dop853 integration the speed ups are
much smaller (D50f/c and D500f/c in the table). During the computation
many more local coordinates are computed densely on a streamline. Thus,
inside a multi-block is the UniGridMapper is already reused several times.
The creation process itself has a much smaller influence on the overall time.
Also when computing long lines a decrease of the speed up occurs as perceived
with the Euler integration.

When comparing Euler and Dop853 timings a similar factor of more than
10 can be observed when looking at E50c/D50c and E500c/D500c. This is a
similar factor as observed in the Couetteflow table, section 7.1.

The initialization process has a much deeper impact on Euler. Thus, the
Dop853 requires just about double time in that case, compare E50f/D50f and
E500f/D500f.

Irritating is the difference in the total number of steps in the 500 steps
lines: 5343 in case of Euler and 5147 in case of Dop853. If a point of a
streamline gets out of the spatial domain line computation will stop before
the final step number is reached. This can happen in case of Euler integration
since the step size might be too long. However, it is unlikely to happen using
the highly accurate Dop853 solver.

This could be related to a problem of finding the local coordinates at
block boundaries. When a world point is located closely at a quite deformed
boundary of a block a point can probably neither be found in one block or
the other.

Similar can occur between cells inside the multi-block. But being in-
side the cell neighbors are known and used to overcome this numerical un-
accuracy without using epsilons, see listing 5.22 in section 5.4.

Similar can be done when neighborhood information of the blocks is avail-
able. Neighborhood information can easily be stored in the Fiber Bundle
model as an additional Fiber Representation. Best, a file converter would
already copy or compute this information into the F5 format.

Further investigation should be done here, since after revisiting the
LocalPointFinder during the work on pathlines with Bidur Bohara and
Nathan Brener (Computer Science Departments of LSU) this issue was
thought to be tackled down completely, see [16] also included in appendix
C.
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Figure 7.9: Streamlines seeded by a line of 10 seed points. Different
parameters were used to compare the performance gain by caching the
Unigridmapper objects. Multi-blocks touched by the streamlines are shown
by their outlines. Top Left: 10 Euler integrated streamlines, 50 steps. Top
Right: 10 Dop853 integrated streamlines, 50 steps. Due to the short length
they are very similar to the Euler integrated lines. Bottom Left: 10 Eu-
ler integrated streamlines, 500 steps. Bottom Right: 10 Dop853 integrated
streamlines, 500 steps. The streamlines differ a lot from the Euler integrated
lines. Because of the long length the difference in the integration is bigger.
Still the Euler integrated lines give a very good approximation. Data of
measurements is collected in the table.
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Figure 7.10: Streamlines seeded by a grid created by two convolution pro-
cesses. A line is convolved with a smaller circle. The resulting grid is again
convoled with a bigger circle. The stirred tank is shown from top viewing in
negative z-direction. Streamlines flow downwards while spinning around the
axis. The streamline ribbons remain ribbons in a quite steady circular flow
until they reach a turbulent region where they are torn apart (region of the
propeller).
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Figure 7.10 illustrates how a multiple convolution of seeding grids helps to
analyze the fluid flow. Ribbons of streamlines are created by seeding densely
along short lines. These lines are grouped in small circles and finally copied
around the axis of the tank to cover a bigger region.

The streamlines seeded by this geometry visualize the flow locally by the
ribbons as well as in wider regions. Also, the many lines do not produce
hardly readable “spaghetti” as seen in figure 7.8. The strong geometrical
symmetry is a result of the convolution of circles and lines. The symmetry
enhances the visual result.

As described in the figure the ribbons get torn apart in the lower region
of the stirred tank. This is also illustrated in figure 7.11. Here, tube-like
streamline are seeded at a similar location as in figure 7.10. Additionally, the
streamlines are colored by the value of the magnitude of the velocity field.
The labeled color-map, section 5.5, illustrates the magnitude values. The
blue to magenta colors represent a high magnitude value on the streamline.

Using the Fiber Bundle and Vish module approach any valid grid object
can be used to seed streamlines. First, only the seed point grids described
in section 6.1.2 were used. During Werner Benger’s work on an iso-surface
module suitable for curvilinear grids, we realized that the iso-surface is a well
defined Fiber Grid object and, thus, valid for seeding streamlines.

One can extract features of the fluid simulation by an iso-surface, for
example, of the pressure or Laplacian field, and can seed a streamline from
the surface. Figure 7.13 illustrates how a pressure iso-surface revealing the
propeller was used to seed the streamlines computation. More examples and
details can be found in [1] also included in appendix C.
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Figure 7.11: Tube-like streamlines seeded in the upper region around the
axis of the stirred tank. This illustration brings together several of the de-
veloped components: Streamline computation in a curvilinear vector field,
illuminated line rendering textured by a color-map which is driven by a scalar
field on the line grid, showing touched multi-blocks and displaying a HUD
for labeling the color map. Similar to figure 7.10 steady and more turbulent
regions can be identified. Turbulent regions are related to high magnitudes
as illustrated by the blue and magenta color on the stream lines tearing apart
the stream-tubes.
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Figure 7.12: Schematic Vish network of the visualization shown in figure
7.11. It consists basically of the same components as illustrated in figure
7.3. Seeding geometry creation is done by convolving two grid objects (grey).
Additional rendering modules enhance the pure streamline visualization (yel-
low). The visualization of touched multi-blocks of the curvilinear data grid
is enabled by connecting the MultiBlockOutlines module. A color-map
ColorRamp is used to texture the rendered lines. Thus, the scalar field of
the computed vector magnitude has to be extracted from the line grid by
using a ScalarFieldSelector which is then connected to the field input of
GlossyColorMapLines. The HUD display labeling the color-map is created
by connecting the two HUD rendering modules to the color-map and the
data range.
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Figure 7.13: Streamlines seeded by an iso-surface created from a scalar pres-
sure field. The iso-surface is stored as a Fiber Grid object in the Fiber Bundle
and is used as the seeding grid for the streamline computation module. This
was not a planned feature for streamline visualization. It is, finally, the
reward of using highly reusable data models and algorithms.
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7.3 Visualizing Geodesics in a sampled

Schwarzschild Metric

The aim of the visualization of the Schwarzschild metric was to look at a
well known simple metric and to reduce the computational complexity for
the purpose of error checking and development.

First, the metric itself had to be computed. So I implemented an an-
alytic creator module that samples the Schwarzschild metric on a uniform
grid, which could be used as an numerical input data field for the geodesic
computation module. First I tried to keep things simple and computed the
metric in the xy-plane only, reducing it to 2D spatial coordinates. I thought
I could cut off the time coordinate as well and do a purely spatial geodesic
computation using the geodesic module in a metric33 field, section 6.2.

So I reduced the metric tensor to

g =


(

1−2m
r

)−1
0 0

0 r2 0
0 0 r2sin2θ

 =


(

1−2m
r

)−1
0 0

0 r2 0
0 0 r2

 (7.2)

with θ = π
2
.

This metric was transformed into Cartesian coordinates by applying equation
(2.15) and stored on each point on a uniform grid object.

However, in some regions these pure spatial geodesics looked pretty well,
whereas in other areas they were distracted strongly from the gravitational
center and some geodesics even got bent out of the xy-plane. Also, the result
changed with different sample resolutions of the grid. While searching for
the error in the algorithm I found two errors regarding some indexing and a
missing normalization of the derivatives of the metric tensor used to compute
the Christoffel symbols. Since derivatives were computed in array index space
they had to be divided by the according cell’s size.

The computed geodesics now resided on the xy-plane and did not, or
just barely, change with different grid resolutions. But the distraction still
occurred.

I introduced a module (ComputeQddot44) that computes the coordinate
acceleration vector q̈ on any given input vector field to visually explore the
distraction of the geodesics. It takes the metric field and a 3D vector field as
input for initial directions q̇. It computes the Christffel symbols and q̈ using
the same template functions as the geodesics and outputs q̈ as a 4D vector
field, see figure 7.14.

I then created a new module that extracts the 3D spatial coordinates of
a 4D vector field: Vector4ToVector3AndScalar. Now, all Vish modules for
rendering 3D vectors can be used to illustrate the spatial part of q̈.
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Figure 7.14: Two Vish modules that are used to compute q̈ in metric
field taking the field and an arbitrary 3D vector field as output. Via the
Vector4ToVector3AndScalar the spatial coordinates of a 4D vector can be
extracted and handed to a common rendering module.

Then I started checking various parts of the algorithm by making compar-
isons to hand-made calculations using OpenOffice spread-sheets. I started to
debug the computation of q̈ at point (−1, 0, 0) with initial direction towards
the center of mass (1, 0, 0). At this point grr should be comparable to the
transformed gxx and finally q̈, since the other components compute to 0:

q̈ =

 q̈r
0
0

 =

 q̈x
0
0

 (7.3)

After I could relate these values and had done many expansions of
Christoffel symbols on paper and summing ups in spread-sheets I switched
to another point and initial direction: point (0, 1, 0) and initial direction
(1, 0, 0). Again, trying to relate results, q̈r and q̈y, still avoiding to do the
tedious coordinate transformations by hand. While doing again expansions
of necessary terms of sums and Christoffel symbols I realized that the time
coordinate of the metric could not be neglected, since it had an influence on
the spatial coordinates.

So, after a good week of debugging I added the time coordinate to the
metric and switched to a geodesics computation in a metric44 tensor field,
initially by adding the corresponding module that samples the 4D metric on
a uniform grid. Again I started to visually explore q̇. Since the computation
algorithms were all developed as template classes and functions, only little
work had to be done for to enable full 4D computation. After correcting
another error regarding a wrong sign the results looked very well.

Then I verified the pure numerical geodesic by comparing them to a
Schwarzschild geodesic computed using the analytic field in polar coordinates.
This geodesic computes the Christoffel symbols and q̈ analytically in polar
coordinates, see equation (2.70). Both geodesics use the Dop853 to solve the
differential equation.
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Figure 7.15 illustrates this verification of the numerical Cartesian
geodesics. Four different parameter settings are shown. The geodesics are
seeded at point (1, 0, 0) in direction (0, 1, 0). The numerical geodesic is shown
in green to red (thick line) and the analytic Schwarzschild geodesic in light
blue (thin line). Two different grid resolutions and two different values for
the mass of the black hole are shown.

With m = 0.31 (upper figures) the numerical geodesic matches the an-
alytic perfectly even in the lower grid resolution. When slightly increasing
the mass to m = 0.3334 the numerical geodesic diverges from the analytic
geodesic after about a quarter of the circular motion. Increasing the grid
resolution helps to converge back to the analytic solution and it matches
almost the full circle, as shown in the lower right figure of figure 7.15.

The numerical geodesic breaks close to the event horizon of the Schwarz-
schild metric, which is illustrated as a light blue thick circle. This is perfectly
expected behavior. Here, the coordinates chosen for the numerical represen-
tation of the metric have a singularity and time and space coordinates start
to switch. The analytic geodesic is computed in polar coordinates, which has
no singularity at the event horizon and, thus, spirals towards the center of
gravity plunging through the event horizon.

The geodesics almost form the so-called the photon orbit of the black
hole. This orbit is found at a distance where geodesics are caught in a
perfect circular trajectory around the heavy mass.

When debugging for the errors, I found looking at the q̈ vector to be a
good method to analyze the metric itself and also properties of the mapping
Christoffel symbols. I used two different approaches to visualize a vector
field of q̈ vectors, which are illustrated in figure 7.16. The vector q̇ vector
field was created using two geometric point distribution modules and a grid
subtraction. The upper left figure illustrates two vector fields: q̇ as blue
arrows and q̈ as yellow arrows. Each starting point of a vector illustrates
a photon moving in the direction of the blue arrow, coordinate-accelerated
being in the direction of the yellow arrow. The same q̈ field is shown in the
lower left figure using vector speckles.

Vector speckles are elliptic Gaussian transparent volumes that show di-
rections of vectors, as introduced in [13]. In contrast to the arrow technique
they do not visualize the magnitude of the vector as clearly. Arrows become
very hard to read especially when there are drawn many of them, especially in
3D. Vector speckles give a better visual impression. Perception of the direc-
tion is enhanced by coloring which is inspired from the physical red and blue
shift. If a vector is pointing away from the observer the according speckle is
colored in red. It is colored in blue when moving towards the observer and
white when getting parallel to the camera image plane. It also fades to white



CHAPTER 7. APPLICATIONS 163

Figure 7.15: Verification of the numerical geodesic computed in a sampled
Schwarzschild metric (green and red line) by comparison to the geodesic of
the analytic metric (thin light blue line). The thick light blue circle illustrates
the event horizon (r = 2·m) of the black hole. The brown lines show the cells
of the uniform grid. Geodesics are computed in xy-plane, indicated by the
accordingly colored lines at the border of the bounding boxes. Top: Mass
m = 0.31. The geodesics match perfectly, also using the coarse (16×16) grid.
Bottom: Mass m = 0.3334. An increase of the grid resolution (128 × 128)
leads to a better match of the numerical geodesic, which breaks at the event
horizon because the coordinate representation of the metric has a singularity
here. The analytic geodesics is computed in polar coordinates that has no
singularity at the event horizon and, thus, spirals towards the center.
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when the vector magnitude becomes small. Several parameters control the
sharpness of this transition.

Thus, the color of a speckle depends on the vector direction, their magni-
tude and the camera position. Coloring changes when the camera is rotated.
To enable the coloring feature of the speckles the camera was slightly rotated
around the x-axis in positive rotation direction. Otherwise all vectors would
have been parallel to the camera plane.

The speckles in the upper half of the lower left figure of figure 7.16 are col-
ored in blue because they point towards the center and the camera. Whereas,
the speckles in the lower half also point towards the center but away from
the camera and are, thus, colored in red.

The singularity around the event horizon (black circle) is much better
visualized than in the according image using the arrows. However, subtle
changes in the vector magnitude are better shown by the arrows.

When looking at the upper left figure the magnitude of the coordinate
acceleration is greater the closer a photon is located to the mass. However, it
decreases towards the axis in direction of movement going through the center
of the black hole. Here, the magnitude decreases towards an the axis parallel
to the x-axis.

The right figures of figure 7.16 illustrate the coordinate acceleration of
particles with no initial speed. They all become attracted to the center of
gravity symmetrically. The change in the vector directions inside the event
horizon is clearly visible also in the bottom figure by the colors of the vector
speckles.

The next figure 7.17 illustrates the coordinate acceleration q̈ (yellow ar-
rows) dependent on different directions of velocities q̇ (blue arrows) of pho-
tons. The photons are located on a quadratic shape around the center of
gravity. They all are coordinate-accelerated towards the center with a mag-
nitude dependent on the moving direction. The maximum is located to the
side of the center and the minimum in the direction of the center, with ref-
erence to the direction of movement.

This property holds when the velocity is rotated. The figures illustrate
four rotations of the velocity. Starting in positive x direction (top left) and
rotating to positive y direction (bottom right).

The velocity vector is transformed to the coordinate acceleration vector by
the Christoffel symbols. The figures illustrate that a more complex structure
than, for example, a linear transformation matrix is necessary. In case of the
latter the angle between the velocity and the coordinate acceleration would
remain constant over rotation. Here, the transformation by the Christoffel
symbols control the magnitude of the coordinate acceleration.

Figure 7.18 relates to figure 7.17. The initial directions are equal for
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Figure 7.16: Schwarzschild metric is explored by the coordinate accelera-
tion of moving photons (left) and the coordinate acceleration of particles
at rest(right).Top: The initial velocity is shown by blue and the coordinate
acceleration by yellow arrows. The vector magnitudes are clearly visible.
20×20 arrows are drawn. Bottom: Coordinate Acceleration is illustrated by
vector speckles. Directions are clearly visible. The singularity at the event
horizon is better recognized. 40 × 40 speckles are drawn. Increasing the
number of speckles often increases the visual appearance, while the image
becomes unreadable if the number of arrows is too high.
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Figure 7.17: Illustration of the coordinate acceleration q̈ on photons moving
in different directions caused by the Schwarzschild metric. The transfor-
mation by the Christoffel symbols is visualized. Velocity is illustrated as
blue and coordinate acceleration as yellow arrows. Photons travel in positive
x-direction (top left) and are rotated to positive y-direction (bottom rigth).
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each sub-figure. Instead of the square of arrows, vector speckles are drawn
in a regular grid. Initial direction become visible by the white color of the
speckles, where vector magnitude becomes small.

The two-dimensional Schwarzschild metric finally is explored by a fan of
geodesics. Figure 7.19 shows 26 geodesics seeded at x = −1 in positive x
direction. The metric field has a resolution of 128× 128. The upper figures
show geodesics the field with mass m = 0.01. The mass was increased to
m = 0.1407 for the two lower figures. The step sizes of the integration are
directly visualized by the yellow dots on the lines.

Comparing the upper figures, a coarse Euler and accurate Dop853 inte-
gration, it turns out that the resulting geodesics are very similar. The Euler
integration yields very good results.

I had to introduce a breaking criterion for the Euler integration, such that
geodesics will not overshoot through the singularity. A combination of three
criteria turned out to work very well. The Euler integration stops when:

� The new step size becomes greater than a constant s.

� The angle of the new line segment to the old line segment exceeds a
constant angle ξ.

� The computation of the norm of the new direction vector gets infinite.

When either criterion is reached the integration stops. Practical values for
the constants are: S = 4 and ξ = π/3. These values are used throughout
the figures. These criteria could easily be made configurable by the user in
the GUI. Similar criteria could be used to improve the Euler integration by
a adaptive step size control.

The Dop853 integration was not equipped with any new breaking cri-
terion. It automatically refines the step size at the singularity and stops
because the integration gets too small some when.

Comparing the lower figures in figure 7.19 shows that geodesics far from
the event horizon are very similar. However, if a geodesic gets close to the
even horizon the integration methods yield different results. For example, the
fifth geodesic (counted from top) is orbiting halfway around the mass using
Euler (bottom left), but orbiting fully around the center using Dop853.

The geodesics are perfectly symmetrical as expected for the symmetrical
metric field. Geodesics getting too close to the center fall into the black hole
and their bending decreases with distance from the center.

There is quite a difference in the computation speed of the integration
methods here. Some time measurements of the computations shown in figure
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Figure 7.18: Viusalization of q̈ computed from different velocities. This
figure relates to figure 7.17. Directions of the velocity are (1, 0, 0) at top left,
(1, 1, 0) at top right, (0.5, 1, 0) at bottom left and (0, 1, 0) at bottom right.
These directions are shown by the speckles in white color because here the
magnitude of q̈ becomes small.
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7.19 are gathered in the following tabluar4:

Integration Steps Stepsize Overall Time Time per Step
[sec] [sec]

Euler m = 0.0100 1276 0.5236 0.67 0.0005
Dop853 m = 0.0001 2619 - 19.95 0.0076

Euler m = 0.1407 1012 0.5236 0.515 0.0005
Dop853 m = 0.1407 6402 - 48.81 0.0076

The integration for one step differs by a factor of about 10. The big
difference in the overall computation time comes from the huge difference in
the number of integration steps. Also, the Dop853 has to do about eight
function evaluations per integration step. When a geodesic approaches the
event horizon the adaptive Dop853 is fighting with the singularity until it
finally breaks. A better and user defined breaking criterion would speed up
the Dop853 integration.

The pure visualization of the geodesics can be enriched by showing the
coordinate acceleration along the integration lines. Figure 7.20 shows such
enhanced geodesics. The integration line module stores the directions of the
integration steps on the line grid. Again, the ComputeQddot44 module is
utilized to compute the coordinate acceleration. In fact, q̈ could be stored in
the line grid as well. Althought utilizing ComputeQddot44 could be avoided
it is still be more flexible approach, since the module can be used with any
vector field.

In the upper figures q̈ is illustrated by arrows and in the lower figure
vector speckles are used. In the left figures geodesics are integrated using
Dop853 using the same parameters as in figure 7.19. The right figures are
computed using Euler with two different step sizes. Again, the speckles give
a better visual impression.

4Measurements were done in SVN Revision 1820 of Vish on a dell M1330 XPS latop
with 4GB RAM, Intel Core2 Duo T8300 @ 2.4Ghz and NVidia Geforce 8400M GS graphics
card. Compiled in Windows Vista 32 using gcc 3.4.2 (mingw special) in debug mode.
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Figure 7.19: A fan of 26 geodesics is seeded at x = −1 in positive x direction.
The left figures are computed using Euler and a step size of 0.5326 and the
right figures are computed using Dop853. The mass for the upper figures has
a value of m = 0.01 and in the lower figures m = 0.2. Geodesic are symmetric
in y direction. Euler and Dop863 integration match very well with small mass
and big distance from the center. When getting close results differ, compare
lower images: the fifth geodesic counting from top.
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Figure 7.20: Geodesics enhanced by showing the coordinate acceleration
along the lines. Left: Dop853 integration. Right: Euler integration with
different step sizes. Arrows are used in the upper figures, which become hard
to read when too many arrows are drawn, see center of left upper figure. Vec-
tor speckles illustrate the coordinate acceleration in the lower figures. They
remain readable even when many speckles are drawn.
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The next step was to move to the full 4D Schwarzschild metric with
variable θ, see eq(). I extended the metric sampling module and started to
analyze the space-time first by looking at q̈. Figure 7.21 shows different pa-
rameters for the mass using, again, the speckle technique. Also q̇ is pointing
in positive x-direction. The singularity at the event horizon is illustrated
clearly by the three axis aligned speckle planes.

Then I verified the spherical symmetry of the metric by seeding geodesics
on a circular shape in the yz-plane. Figure 7.22 illustrates the geodesics that
get bent symmetrically around the black hole. Mass was increased starting
from m = 0.1 to m = 0.3. The symmetry is best shown in the left lower
figure where all geodesics intersect in one point after having orbited around
the center of mass.

Another figure illustrating was created by seeding geodesics on a vertical
and horizontal line in the yz-plane. Figure 7.23 shows the result. I noticed
some geodesics that are reflected at the event horizon, see left figure. Six
geodesics starting close to the center of the seeding cross get reflected. In-
creasing the sampling of the metric field from 64× 64× 64 to 128× 128× 64
yielded a better result, see right figure. Thus, I used the increased sampling
for the following analysis.
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Figure 7.21: Vector speckles illustrating q̈ sampled on three axis aligned
planes of a 3D Schwarzschild based on a q̇ going in positive x direction. The
coordinate acceleration is pointing to the center showed by the direction and
color of the speckles. The spherical singularity at the event horizon(black
circles) is clearly illustrated. Also, the small magnitude of the vectors at the
x-aligned axis going through the center of the black hole is indicated by the
white color.
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Figure 7.22: Geodesics seeded on a circular shape in yz-plane, r = 2.0.
The black sphere shows the event horizon. The spherical symmetry of
the Schwarzschild metric is illustrated using different values of m. Top:
Geodesics are computed using Euler integration, m = 0.1 and m = 0.2.
Bottom: Dop853 integration is used, m = 0.194 and m = 3.0
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Figure 7.23: Geodesics seeded on a cross like shape. The symmetry of the
metric field results in symmetric geodesics. Dop853 integration is used. Left:
Too coarse sampling resolution yields in reflected geodesics (64 × 64 × 64).
Right: Increased resolution gives better results. No geodesics are reflected at
the singularity (128× 128× 64).

The next two figures illustrate Geodesics enriched with further informa-
tion. The 4th dimension of the coordinate acceleration was mapped as a
color on the geodesics in figure 7.24. As photons approach the black hole
they become coordinate-accelerated in time: the stronger the closer. After
passing the black hole coordinate acceleration in time becomes zero (dark
red color).

Seeding a tube-like shape visualizes contraction or, in this case, expansion
of the photons as they move in the space time. This can be interpreted as
visualization of the Riemann tensor, section 2.1.8. The deviation of the
geodesics are well illustrated by the tube-like shape visualizing the tensor of
rank four.

In figure 7.25 vector speckles where added to visualize the spatial coordi-
nate acceleration, like in figure 7.20. Now, the full 4D coordinate acceleration
is visualized along the geodesics. This setup was chosen for analyzing the
light paths in the Kerr metric in the following chapter.



CHAPTER 7. APPLICATIONS 176

Figure 7.24: Geodesics forming a tube-like shape. Expansion is illustrated.
The color on the lines represent the time component of q̈. It becomes zero
after passing the black hole. To visualize the geometry of the 3D lines three
axis aligned camera setups and one free camera position were chosen. The
tube-like shape reveals the deviation of the geodesics and thus visualizes the
Riemann tensor, which is a tensor of rank four.
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Figure 7.25: Like figure 7.24. Vector speckles were added to illustrate the
spatial components of q̈.
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Figure 7.26: Schematic Vish network of the visualization shown in figure 7.25.
Seeding geometry is copied and transformed to compute a vector field by a
grid subtraction (grey). This field defines the initial conditions for the com-
putation module. The four dimensional tensor field is extracted from the cre-
ator module and handled to the geodesic computation module Geodesics44.
The lines grid is passed to the line rendering module GlossyColorMapLines.
From the line grid the tangential direction field is extracted and used to
compute q̈ by ChristoffelQddot44, which must also be connected to the
metric tensor field. The resulting four dimensional coordinate-acceleration
is split into a three dimensional spatial vector field and a scalar representing
time by Vector4ToVector3AndScalar. The scalar field is passed to the line
rendering module driving the coloring and the vector field is passed to the
VectorSpeckles drawing color mapped speckles of q̈ along the geodesics.
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7.4 Visualizing Geodesics in a sampled Kerr

Metric

After verifying the geodesic computation and exploring the symmetrical
Schwarzschild field, a more complex spacetime is analyzed using the pre-
viously described techniques. This chapter focuses on the visualization of
the Kerr metric, section 2.2.3. Thus, emphasis is on the figures. Textual
explanations are kept short. “A picture is worth a thousand words”. The
previous chapter should have been read to be able the read and interpret the
figures correctly.

Again, the a Vish module was created to sample the metric field on a
uniform grid. Therefore, equation (2.74) and equation (2.15) were utilized.
An additional parameter now controls the angular momentum of the black
hole around the z-axis. The Kerr metric is still a stationary field without
evolution over time. Thus, the geodesics computed here are an analogue to
streamlines in CFD.

To explore the Kerr metric I use series of figures with varying angular mo-
mentums. Often more than one camera perspective is necessary to illustrate
the 3D geometry unambiguously.

First some figures show the coordinate-acceleration vector by given initial
speed, again, always along the positive x-direction. I tried several seeding
geometries. First, the 3D cross similar to figure 7.21, see figure 7.27. The
angular momentum is increased by constant mass. Comparing the xy-planes
of the two upper figures shows that the coordinate acceleration is starting to
spin clockwise around the center of gravity. What is shown clearly is that
the field loses its spherical symmetry around the center.

Next, geodesics were seeded in the xy-plane of the metric in x-direction.
Again, starting the exploration in a reduced two/dimensional case. Figure
7.28 and figure 7.29 show a series of eight figures with increasing angular
momentum. The angular momentum is from left to right and from top to
bottom:

a = 0.0,
a = 0.01,
a = 0.05,
a = m = 0.15;
a = 0.25,
a = 0.5,
a = 0.75,
a = 1.0.

The illustrations with a > m maybe have no physical meaning. Here, the
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event horizon at r+ becomes undefined, section 2.2.3. However, the param-
eter analysis was also done with some out-of-range values since they show
characteristics in an over-exaggerated way.

The white or black sphere in the following figures represents the event
horizon of a Schwarzschild black hole with the corresponding mass. When
looking at the locations where the geodesics break, it is observed that the
event horizon r+ of the Kerr black hole shrinks as the angular momentum
increases.

The first figure in figure 7.28 illustrates how the geodesics on the upper
half are bent toward the center and collide earlier with the black hole, while
the geodesics on the lower half are bent away from the black hole. The sin-
gularity moves inwards with increasing angular momentum. Geodesics that
are bent away from the black hole coordinate-accelerate in time component
again after having passed the black hole.

When increasing the angular momentum over the value of mass, geodesics
on the lower half are straightened out by the rotation, see right top figure of
figure 7.29 (a = 0.5) and finally become reflected.
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Figure 7.27: Vector speckles on axis aligned planes in a Kerr metric illustrat-
ing q̈ with q̇ = (1, 0, 0). The angular momentum a is increased, but holding
the mass m = 0.2. From left to right and top to bottom: a = 0.0, a = 0.1,
a = m = 0.2, a = 1.0. The Kerr event horizon at r+ shrinks when the angu-
lar momentum is increased. The corresponding Schwarzschild event horizon
is illustrated by the circles (black). The coordinate acceleration is spinning
around the center, what is illustrated on the xy-plane.



CHAPTER 7. APPLICATIONS 182

Figure 7.28: Geodesics seeded in the xy-plane on the line x = −1.0 in positive
x-direction. With constant mass m = 0.15 the clockwise angular momentum
a is increased. Geodesics in the upper half get more attracted to the black
hole, whereas the geodesics in the lower half are less attracted. The r+ event
horizon shrinks with increasing angular momentum. When geodesics pass
the black hole they are not further coordinate-accelerated in time.
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Figure 7.29: Continuation of figure 7.28. Here a > m and hence the illustra-
tions have no physical meaning.
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Before seeding geodesics in the 3D volume I tried to look at the co-
ordinate acceleration of the whole volume. First I tried to do some cu-
bic slices as shown in figure 7.30. Seeding was done by using three
GeometricPointDistribution modules for the cubics together with two
GridAdder operations and one GridTransform with one GridSubtractor

to create the q̇ vector field.
The field is symmetric in the beginning (top left). Here, also the spher-

ical singularity is observable. When increasing the angular momentum one
can see that the directions are influenced by the momentum. With small
momentum the influence applies at the nearer regions. As it grows also re-
gions further away from the center are changing directions. The spherical
singularity vanishes as it shrinks into the smallest cube.

The vector-speckle module allows to animate the speckles in a repeated
cycle motion to indicate the direction. The animated speckles give a very
good visual impression of q̈.

I tried a different seeding strategy over the whole volume. The
RandPointDistribution was used to create randomly distributed speck-
les. Figure 7.31 again shows different values for the angular momentum,
which is zero in the top left figure. Surprisingly, the randomly distributed
speckles give a quite good illustration over the volume and certain regions
of the coordinate-acceleration flow become visible. Interactive camera rota-
tion helps a lot for exploration. Illustrating axis-aligned views reveals some
properties of the randomly speckled flow field.

Figure 7.32 illustrates some properties of the coordinate acceleration flow
field based on a movement in positive z-direction. The flow field is symmet-
rical to one plane in the upper and lower images. It is even symmetric to
two planes in the mid figures. The left figures show an angular momentum
of a = 0.2 and the right figures a = 1.0. Mass is set to m = 0.2 for all figures.
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Figure 7.30: Vector speckles on cubic shapes around the center of mass
illustrate q̈. From left to right and top to bottom: a = 0.0, a = 0.1, a =
m = 0.2, a = 0.5. The spherical singularity vanishes and the spherical
symmetry of q̈ is lost with increasing angular momentum.
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Figure 7.31: Randomly distributed vector speckles illustrate q̈ over the whole
grid volume. From left to right and top to bottom: a = 0.0, a = 0.1,
a = m = 0.2, a = 0.5. This method gives a good impression over the whole
volume showing vortices and flow concentrations, not visible in figure 7.30.
Especially when enabling the repeated animation of the speckles the flow is
visualized very well. On paper this is not possible. But some axis-aligned
illustration of the same kind reveal some properties as well, see figure 7.32.
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Figure 7.32: Axis-aligned camera perspectives illustrating the coordinate
acceleration flow in positive x-direction of two different angular momentums.
Symmetries of the flow field is clearly visualized. Left : a = 0.2. Right:
a = 1.0.
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Next, geodesics on a centered vertical line are illustrated in figure 7.33 and
figure 7.34, once again showing a series with increasing angular momentum.
The upper left figure is similar to figure 7.23. By increasing the momentum
the geodesics below and above the event horizon are bent in direction of the
positive y axis and are less attracted to the center of gravity. The geodesics
are symmetrical to the xy-plane.
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Figure 7.33: Geodesics seeded in positive x direction with m = 0.2 and
a = 0.0, a = 0.01, a = 0.1 and a = 0.15. With introducing the angular
momentum the geodesics above and below the event horizon are bent in
positive y-direction.
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Figure 7.34: Continuation of figure 7.33, a = 0.25, a = 0.5, a = 0.75 and
a = 1.0 (unphysical). In the upper left figure the sixth geodesic from the
bottom is torn towards the black hole and bent upwards. When passing the
center and is bent outwards, now escaping the heavy mass. In the lower right
figure geodesics above and below the event horizon get straightened but are
torn in positive y-direction.
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A similar setup as in the left lower figure of figure 7.22 is used to further
explore the metric. Again, geodesics are seeded on a circle in the yz-plane,
such that they all intersect in one point, if no angular momentum is present
and the angular moment is increased. The following five figures show the
series from three different axis aligned camera perspectives.

When looking at the spacetime from top, see figure 7.35 and upper fig-
ures of figure 7.36, a similar behavior to the 2D analysis can be observed.
Geodesics with a greater distance to the xy-plane through the center of grav-
ity are less influenced by the angular momentum. Reflections only occur
close to that plane with very strong momentum. Geodesics are symmetric
to the xy-plane, which is illustrated in the lower figures of figure 7.36 and in
figure 7.37, figure 7.38 and figure 7.39.
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Figure 7.35: Geodesics seeded in positive x-direction on a circle in the yz-
plane: m = 0.2, a = 0.0 (top left), a = 0.01 (top right), a = 0.05 (bottom
left), a = 0.2 (bottom right). View in negative z-direction. With a = 0
geodesics are almost located on the photon orbit of the Schwarzschild black
hole. A slight increase in the angular momentum breaks the symmetry (top
right). Geodesics seeded in the upper part of the figure are curved stronger
towards the event horizon. Some of them already fall through it. In contrast,
the geodesics on the lower part are less attracted towards the center. Further
increase of the momentum intensifies this effect. Again, the shrinking of
the coordinate singularity can be seen, as geodesics break inside the former
Schwarzschild radius (white). Bottom right: The geodesic in the mid of the
figure is first bent in y-direction and then, when getting closer to the xy-plane
strongly coordinate-accelerated toward the center in negative y-direction.
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Figure 7.36: Top: Continuation of figure 7.35: a = 0.5 and a = 1.0 (unphysi-
cal). Bottom: View in negative y-direction: a = 0.0 and a = 0.01. Geodesics
are symmetric to the xy-plane through the center of gravity. The symmetry
to the xy-plane is clearly illustrated.
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Figure 7.37: Continuation of bottom figures of figure 7.36: a = 0.05 (top
left), a = 0.2 (top right), a = 0.5 (bottom left) and a = 1.0 (bottom right).
Geodesics above and below the center are less attracted to the center with
increasing angular momentum.
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Figure 7.38: View in negative x-direction: a = 0.0 (top left), a = 0.01
(top right), a = 0.05 (bottom left), a = 0.2 (bottom right). Geodesics are
symmetric to the xy-plane through the center of gravity.
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Figure 7.39: Continuation of figure 7.38: a = 0.5 and a = 1.0 (unphysical).

Finally, tubes of geodesics are seeded, similar to figure 7.25. The tubes
are created using a grid convolution along a diagonal line in the yz-plane.
Besides the path and coordinate-acceleration of the geodesics, the deviation
of neighboring geodesics is illustrated, too, again visualizing the Riemann
tensor.

For example, the lower bundle of geodesics in the bottom left figure of
figure 7.43 gets contracted and bent upwards as it approaches the center of
gravity. As it passes by, it is bent downwards again while expanding.

Again, the series of figures illustrates the same mass with increasing an-
gular momentum.

The utilized Vish module network is almost identical to the one illustrated
in figure 7.26. The only difference is the creation module for the metric tensor
field. The KerrMetric44 module is used instead. An additional geometric
point distribution used for convolution is added to the seeding modules as
well.

The vis script that creates the network for the following fig-
ures is illustrated in listing 7.1 and can be found in the Vish SVN:
$VISH/data/KerrGeodesics44 Tubes.vis
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Figure 7.40: Geodesics seeded in positive x-direction on circles convolved by
a diagonal line in the yz-plane. View in negative z-direction. The path of
the geodesics, the coordinate acceleration in 4D (color on line and vector
speckles) and the deviation of neighbored geodesics (Riemann tensor) are
visualized: a = 0.0 (top left), a = 0.01 (top right), a = 0.1 (bottom left) and
a = m = 0.2 (bottom right). Bottom right: The geodesics of the upper tube
of the figure is stronger coordinate-accelerated to the center. The coloring
shows that this happens not in space but also in the time coordinate.
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Figure 7.41: Over exaggerated and unphysical continuation of figure 7.40:
a = 0.25 (top left), a = 0.5 (top right), a = 0.75 (bottom left) and a = 1.0
(bottom right).



CHAPTER 7. APPLICATIONS 199

Figure 7.42: Like figure 7.40 but view in negative y-direction: a = 0.0 (top
left), a = 0.01 (top right), a = 0.1 (bottom left) and a = m = 0.2 (bottom
right). The tubes close to the center axis are contracted, whereas the outer
tubes are expanding. Time acceleration is increasing towards the center.
Symmetry is lost with increase of the angular momentum.
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Figure 7.43: Unphysical continuation of figure 7.42: a = 0.25 (top left),
a = 0.5 (top right), a = 0.75 (bottom left) and a = 1.0 (bottom right).
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Listing 7.1: The vis script defines the Vish module network for
the illustrations in figure 7.40. The script is located in the SVN:
$VISH/data/KerrGeodesics44 Tubes.vis

1 CreateBundle / KerrMetric44 b lackho l e
2 b lackho l e . t imes teps=10
3 b lackho l e .m=0.2
4 b lackho l e . a=0.2
5 b lackho l e . gr ids izeXY=128
6 b lackho l e . g r i d s i z e Z =64
7

8 Fiber /Grid bh gr id
9 bh gr id . spacet ime=>b lackho l e

10 <bh gr id>
11

12 Fiber / Tensor f i e ld4D b h f i e l d
13 b h f i e l d . g r id=>bh gr id
14 <b h f i e l d >
15

16 U t i l i t y /Point3D Point
17 Point . range {Viewer1}=1
18 Point . x{Viewer1 }=0.0
19 Point . y{Viewer1 }=0.0
20 Point . z{Viewer1 }=0.0
21 <Point{Viewer1}>
22

23 U t i l i t y /Point3D Point2
24 Point2 . range {Viewer1}=1
25 Point2 . x{Viewer1}=−1.0
26 Point2 . y{Viewer1 }=0.0
27 Point2 . z{Viewer1 }=0.0
28 <Point{Viewer1}>
29

30 U t i l i t y /Point3D PointDir
31 PointDir . range {Viewer1}=1
32 PointDir . x{Viewer1}=1
33 PointDir . y=>Point . y
34 PointDir . z=>Point . z
35 <PointDir {Viewer1}>
36

37 Converters / FloatsToRotor Rotate
38 Rotate . yang=90
39

40 Converters / FloatsToRotor Rotate2
41 Rotate2 . zang=90
42

43 CreateFiber / Po in tD i s t r i bu t i on GridPoints
44 GridPoints . p o s i t i o n=>Point
45 GridPoints . r o t a t i o n=>Rotate



CHAPTER 7. APPLICATIONS 202

46 GridPoints . l ength =0.2
47 GridPoints . l eng th subd iv s =10
48 GridPoints . he ight =0.1
49 GridPoints . h e i gh t subd iv s =10
50 GridPoints . type=C i r c l e
51

52 CreateFiber / Po in tD i s t r i bu t i on GridPoints2
53 GridPoints2 . p o s i t i o n=>Point2
54 GridPoints2 . r o t a t i o n=>Rotate2
55 GridPoints2 . l ength =2.0
56 GridPoints2 . l eng th subd iv s=5
57 GridPoints2 . he ight =1.8
58 GridPoints2 . h e i gh t subd iv s =20
59 GridPoints2 . type=Line
60

61 GridOperat ions / GridConvolver conv
62 conv . c h i l d g r i d=>GridPoints
63 conv . g r id=>GridPoints2
64 conv . p o s i t i o n=>Point
65 Network . i c o n i f y ( conv )
66

67 Converters / FloatsToRotor rot3
68 Network . i c o n i f y ( rot3 )
69

70 U t i l i t y /Point3D s c a l
71 s c a l . range =2.0
72 s c a l . x=1.0
73 s c a l . y=1.0
74 s c a l . z =1.0
75 Network . i c o n i f y ( s c a l )
76

77 GridOperat ions /Transform trans
78 t rans . g r id=>conv
79 t rans . p o s i t i o n=>PointDir
80 t rans . r o t a t i o n=>rot3
81 t rans . s c a l e=>s c a l
82 Network . i c o n i f y ( t rans )
83

84 GridOperat ions/− Sub
85 Sub . g r id=>conv
86 Sub . d i r e c t i o n=>t rans
87 <Sub{Viewer1}>
88 Network . i c o n i f y (Sub )
89

90 Display /BoundingBox BB
91 BB. g r id=>bh gr id
92 Network . i c o n i f y (BB)
93

94 Display /VectorArrows Arrs
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95 Arrs . d a t a f i e l d=>Sub
96 Arrs . s c a l e =−1.0
97 Network . i c o n i f y ( Arrs )
98

99 Display / V e r t i c e s Verts
100 Verts . g r i d=>conv
101 Verts . b r i g h t n e s s =1.0
102 Verts . s c a l e =−1.0
103 Network . i c o n i f y ( Verts )
104

105 Display / Dre ibe in d r e i
106 d r e i . g r i d=>bh gr id
107 d r e i . t h i c k n e s s =28
108 Network . i c o n i f y ( d r e i )
109

110 Compute/ Geodes ics44 g e o d e s i c s
111 g e o d e s i c s . i n p u t f i e l d=>b h f i e l d
112 g e o d e s i c s . s t a r t f i e l d=>Sub
113 g e o d e s i c s . l i n e l e n g t h =100
114 g e o d e s i c s . s t e p s i z e =0.5
115

116 Colormaps/Colorramp ramp
117 ramp . c o l o r =0.2
118

119 Display / GlossyColorMapLines l i n e s
120 l i n e s . g r i d=>g e o d e s i c s
121 l i n e s . ghos typo int s=on
122 l i n e s . p o i n t s i z e =0.5
123 l i n e s . l i n ew id th =2.0
124 l i n e s . f i e l d co l o rm ap=>ramp
125 l i n e s . c o l o r l e n g t h=o f f
126

127 Fiber / V e c t o r f i e l d v f
128 vf=>g e o d e s i c s
129

130 Compute/ Chr i s to f f e lQddot44 c h r i s t i
131 c h r i s t i . t e n s o r f i e l d=>b h f i e l d
132 c h r i s t i . q d o t f i e l d=>vf
133

134 Operat ions /DoubleBinary mult
135 mult . operat i on=mult
136 mult . in=>b lackho l e .m
137 mult . operator=4.0
138 Network . i c o n i f y ( mult )
139

140 CreateFiber / Po in tD i s t r i bu t i on HorizonGrid
141 HorizonGrid . l ength=>mult . out
142 HorizonGrid . type=Sphere
143 HorizonGrid . l eng th subd iv s =500
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144 HorizonGrid . h e i gh t subd iv s =10
145 Network . i c o n i f y ( HorizonGrid )
146

147 Display / V e r t i c e s HVerts
148 HVerts . g r i d=>HorizonGrid
149 HVerts . s c a l e =−2.2
150 HVerts . b r i g h t n e s s =1.0
151 Network . i c o n i f y ( Verts )
152 Network . i c o n i f y ( HVerts )
153

154 Convert/ Vector4ToVector3AndScalar vec4Tovec3
155 vec4Tovec3 . f i e l d=>c h r i s t i
156 <vec4Tovec3>
157 Network . i c o n i f y ( vec4Tovec3 )
158

159 l i n e s . s e c o n d a r y f i e l d=>vec4Tovec3
160

161 <blackho le>
162

163 Fiber / V e c t o r f i e l d vf2
164 vf2=>vec4Tovec3
165 <vf2>
166

167 Colormaps/DopplerMap dpmap
168

169 Display / VectorSpeck le s speck
170 speck . colormap=>dpmap
171 speck . v e c t o r f i e l d=>vf2
172 speck . i n t e n s i t y =0.2
173 speck . s i z e =5.0
174 speck . v e l o c i t y s c a l e =3.0
175

176 Backgrounds/Background back
177 back . b lue =0.2
178 back . green =0.22
179 back . red =0.22
180

181

182 Display /GridLegend g l
183 g l . boundingbox=>BB
184 g l . l i n ew id th=0
185 g l . l i n e s c a l e =0
186 Network . i c o n i f y ( g l )
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Figure 7.44: One geodesic is passing through a 3D diffusion tensor field of
a MRI scan of a brain. Properties of the diffusion tensor field are directly
visualized using Vishs tensor splats. Here, the tensor splats reveal the spatial
domain of the brain. When the geodesics approaches the brain tissue it starts
to deform and curve depending on the diffusion tensors. Leaving the tissue
it becomes a straight line again. Left: View in y direction. Tensor splats in
xz plane. Right: View in z direction. Tensor splats in xy plane.

7.5 Fiber Tracking in MRI Data

Although computing and visualizing geodesics stemmed from general relativ-
ity and the analysis of curved space times, there are other scientific domains
where such geodesics can be applied.

As described in section 2.4 data generated from MRI scans can be charac-
terized by tensor fields, see equation (2.77). Thus, Geodesics can be applied
to such tensor fields for analysis, as well. Geodesics are then torn toward
high diffusion speed directions of the tensor field.

The dataset shown here was provided by Hagen Kitzler (Department of
Neuroradiology at Dresden University of Technology) and is a real MRI scan
of a human brain infected with a brain tumor. It is hard to differentiate
between healthy and tumor brain regions. A direct tensor field visualization
method, using so called tensor splates, see [9], can revealed tumor regions.
There is a huge interest in good visualization methods.

This section is a proof of concept of developing and implementing visual-
ization algorithms in a flexible and reusable way using the Fiber Bundle data
model and the Vish environment. Developed tools can be used in different
contexts and different scientific domains as well.
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Figure 7.45: Geodesics seeded inside the brain tissue region. They start on
a small sphere and are sent outwards. Left: View from in z-axis direction.
Right: View in x-axis direction.

With the tensor field loaded into the Fiber Bundle model, the developed
spatial geodesics module, section 6.2.2, was directly applicable to the diffu-
sion tensor field.

First, the integration yielded just straight lines. An investigation uncov-
ered that the diffusion tensor field is described by very small numbers. In
contrast to the metric tensor field in general relativity the tensor field is not
normalized in any kind. The diffusion tensor field can be scaled by any value.

Thus, I added a scaling factor to the integral line module, which allows
to scale q̈ during integration. This is equivalent to multiplying the tensors
of the diffusion field by a scalar factor. For the illustrations shown here a
scaling factor of about 200000 was used to reveal some curvature.

Figure 7.44 illustrates one geodesic traveling through the brain tissue.
Where diffusion occurs, it deforms and curves along its way attracted into
directions of high diffusion speed. When sending a bundle of geodesics seeded
closely together, they end up traveling in many different directions, as illus-
trated in figure 7.46. Figure 7.45 shows two different views of geodesics
seeded in the brain tissue and flowing outwards.

However, the question of whether geodesics can be an appropriate tool
for brain analysis or even tumor localization goes beyond the scope of this
thesis and could be the topic of further investigation. Coloring or driving the
transparency of visualized geodesics might highlight regions of low curvature
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Figure 7.46: A bundle of geodesics passing through the MRI brain scan.
Geodesics are seeded on the magenta circle in direction of the yellow circle.
Left: Geodesics integrated using Euler. Right: Geodesics integrated using
Dop853. Top: 22 seeding points on the circle. Bottom: 52 seeding points on
the circle.

that could be an indication for tumor regions. Different seeding strategies
can be interesting to investigate as well. Seeding in the direction of the
maximal eigenvector could be explored.
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Figure 7.47: Schematic Vish network used to create the visualizations
shown in figure 7.44 and figure 7.46. The tensor field data is extracted
from the module that load the F5 file, by first selecting a grid object
and then a tensor field (cyan). The seeding geometry is created using a
GeometricPointDistribution which is copied and transformed to compute
a direction vector field (grey). The StreamlineIntegrator does the compu-
tation and stores a grid of lines back into the bundle hosting the tensor field
and provides a grid handle for the rendering module GlossyColorMapLines.
The tensor splats are rendered using the TensorPatterns rendering module
connected to the diffusion tensor field.



Chapter 8

Future Work

The thesis opened possibilities for future work and extensions in several di-
rections. For example:

� Add AMR support to the FindLocalFromWorldPoint class.

� Introduce a geodesic module that takes time evolution of the underlying
grid into account.

� Implement other types of integration lines, such as gradient lines in
scalar fields or other types of CFD integration lines.

� Enhance the grid convolution by aligning the copied grid by a given
direction. Then, for example, circles could be copied along a line and
used for seeding again. Contraction and Expansion along a line could
then be visualized by computing short integral lines of the copied ge-
ometry.

� Introduce the GridEvaluator to re-sample any grid based data on a
different grid, such as sampling a pressure field on a stream line grid
or on a density iso-surface.

� Provide a convenient data export functionality of Fiber Bundles to
Vish. Then any Fiber data, such as a pressure field sampled stream
line can be exported to F5. Other independent programs could then be
used to perform CFD calculations or visualizations on the streamlines.

� The rendering module can be enhanced. For example, adding trans-
parency could help to visually extract information. Curvature measures
mapped to visual parameters could enhance illustrations. Extrusion of
geometric shapes along lines could help to add even more information
to the displayed lines.
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� More work can be spent of the frameworks to enhance usability and
reduce source code in the application modules. More convenience func-
tions could be added to operate with the Fiber Bundle data library.

� More data exploration of MRI data and combination of visualization
techniques could possibly reveal techniques for better brain tumor de-
tection.



Chapter 9

Conclusion

The framework I implemented allow to visualize streamlines in vector fields
and geodesics in 3D spatial or 4D spacetime metrics. Underlying data may be
given on uniform or multi-block grids. Coarse and highly accurate integration
schemes are provided, and interactive 3D line visualizations cached on the
GPU can be used for exploration. Functionality can easily be extended.

The developed techniques have been verified on simple test case scenarios
(Couette Flow and Schwarzschild metric). They were used to explore the flow
of fluids in a stirred tank and the curvature of spacetime of the rotating black
hole (kerr metric). The rudimentary geodesic visualization was enhanced
by colors and vector speckles [section 7.3] to depict the four-dimensional
coordinate-acceleration along the integration lines. Any metric data, such
as data stemming from numerical relativity, can be loaded when provided in
the correct F5 format [8].

The generally greater amount of work spent on re-usable and flexible
designs and data models was rewarded by opening unexpected possibilities.
The major achievements of this thesis are:

� The 3D visualization framework I implemented as part of this thesis
makes investigation of data stemming from numerical relativity or com-
putational fluid dynamics more accessible to both application scientists
and scientific visualization programmers.

� My advances in techniques for operations on Fiber Grids make defini-
tions of several seeding geometry possible. In particular, the invention
of the grid convolution has yield a powerful generic tool for geometry
creation, as described in [1].

� The highly modular implementation approach allow enabled seed-
ing streamlines originating from an iso-surface and visualizing the

211



CHAPTER 9. CONCLUSION 212

coordinate-acceleration along geodesics.

� Finding a common template interface for general line integral compu-
tation has reduced the actual code for geodesic computation tremen-
dously. Other types of integral lines can be added with a minimum of
source code development (with probably less than 200 lines of source
code).

� Separating the handling of the underlying numerical discretization grids
from the computational algorithms via the LocalFromWorldPoint class
allows to formulate algorithms independent of the grid structure. My
work provided the essential basis for Bidur Bohara and Nathan Brener
at the computer science department of the Louisiana State University,
[16]. Moreover, this method allows to easily re-sample on any grid,
given data on another grid.

� I reviewed and clarified the utilized research software environment by
creating a tutorial and complementing documentation. This was im-
portant for developing the concepts of the framework. Together with
the detailed descriptions throughout the thesis. This provides a good
getting-started-documentation for other researchers.

� The utilization of the framework is demonstrated. Several applications
illustrate visualization possibilities on test and research scenarios.

� Images and videos of the scientific visualizations can be created in very
high image quality. Thus they are applicable not only for research but
also for to public outreach.



Chapter 10

Fazit

Mit dem von mir entwickelten Softwareframework können Stromlinien in
Vektorfeldern und Geodäten in drei- oder vier dimensionalen Raumzeiten vi-
sualisiert werden. Die numerischen Daten können auf uniformen oder kurvi-
linearen Multi-Block-Gittern gegeben sein. Ein grobes und ein hochpräzises
Integrationsverfahren wird für die Integration bereitgestellt. Die interaktive
3D Darstellung wird auf der Graphikhardware gecached.

Die Verfahren wurden an zwei einfachen Szenarien getestet und veri-
fiziert (Couette-Strömung und Schwarzschildmetrik). Es wurden dann die
Strömung in einem Mischtank und die Raumzeitkrümmung eines rotierenden
schwarzen Loches (Kerr-Metrik) visualisiert. Die Darstellung der Geodäten
wurde durch Einfärben und Beifügen von Vektor-Sprenkeln erweitert und
damit die zugehörige vier-dimensionale Koordinatenbeschleunigung visual-
isiert. Jedes metrische Tensorfeld, das im korrekten Datenformat (F5) bere-
itgestellt wird, siehe [8], kann so visualisiert werden, also im besonderen
numerisch relativistische Simulationsdaten.

Der Mehraufwand, investiert in Konzepte, wiederverwendbare Designs
und Datenmodelle, wurde mit unvorhergesehener Funktionalität belohnt.
Die Haupterrungenschaften der Arbeit sind:

� Die in dieser Arbeit entwickelten Visualisierungs-Tools ermöglichen
die Untersuchung von Daten und damit verbundenen Fragestellun-
gen aus Simulationen der numerischen Relativitätstheorie und der
Strömungsmechanik. Die entwickelten Softwarekomponenten können
einfach erweitert werden. Davon profitieren Wissenschaftler sowohl als
Anwender als auch als Visualisierungs-Programmierer.

� Mit den hervorgegangenen Operationen auf Fiber Grids kann eine
Vielfalt an Startpunktgeometrien erzeugt werden. Besonders mit
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meiner Erfindung der “Gridfaltung” können komplexe Gebilde einfach
erzeugt werden, siehe [1] oder Anhang C.

� Visualisierungstechniken, wie zum Beispiel eine Isofläche als Startge-
ometrie für Stromlinien vorzusehen oder Geodäten mit Vektor-Sprenkel
zu auszurüsten, sind durch Verwendung sehr modularer Implemen-
tierungsansätze entstanden.

� Die Entwicklung eines gemeinsamen C++ Template Interfaces für die
Berechnung von Integrallinien ermöglichte eine sehr kompakte Imple-
mentierung der Geodätenberechnung. Weitere Integrallinien können
nun ebenfalls mit minimaler Quellcodelänge implementiert werden.
(Mit wohl weniger als 200 Zeilen Quellcode.)

� Die Abstraktion der Berechnungsalgorithmen von den notwendigen Op-
erationen zur Handhabung der diskreten Gitter wurde durch die Klasse
LocalFromWorldPoint1 erreicht. Damit können Algorithmen nun un-
abhängig vom Diskretisierungsschema implementiert werden. Meine
Arbeit ermöglichte jene von Bidur Bohara und Nathan Brener am In-
stitut für Informatik an der Louisiana State University, siehe [16] oder
Anhang C. Es ermöglicht eine einfache Umrechnung von Daten, die auf
einem Gittertyp gegeben sind, auf einen anderen Gittertyp.

� Die kritische Begutachtung und Analyse der Softwareumgebungen, die
in der Forschung entstanden sind, brachte Erkenntnisse, die für die En-
twicklung meiner Framework Konzepte wichtig waren. Ich erstellte
ein Tutorial und ergänzte die Dokumenation. Zusammen mit den
ausführlichen Beschreibungen in dieser Arbeit bietet dies einen gute
Startbasis für jeden Wissenschaftler, der die Softwareumgebungen ver-
wenden möchte.

� Die Anwendung des Frameworks wurde demonstriert. Die
Visualisierungsmöglichkeiten wurden in Testszenarien und einem
Forschungsszenario, [Kapitel 7.2], vorgestellt.

� Bilder der wissenschaftlichen Visualisierungen wurden in sehr guter
Qualität erstellt und können somit auch für Öffentlichkeitsarbeit ver-
wendet werden.

1“LokalerVonWeltPunkt”



Bibliography

[1] Werner Benger; Marcel Ritter; Somnath Roy; Sumanta Acharya and
Feng Jijao. Fiberbundle-Based Visualization of a Stirred-Tank Flow. In
WSCG’ 2009 Communication Papers Proceedings, 2009.

[2] Keith Andrew and Charles G. Fleming. Space-time geometries charac-
terized by solutions to the geodesic equations. Computers in Physics,
6(5):498–505, Sep/Oct 1992.

[3] Autodesk. Maya. http://usa.autodesk.com, 2010.

[4] Werner Benger. Simulation of a black hole by raytracing. In
R.A. Puntigam F.W. Hehl and H. Ruder, editors, Relativity and Sci-
entific Computing - Computer Algebra, Numerics, Visualization, pages
2–3, Berlin Heidelberg New York, 1996. Springer Verlag. http://www.

photon.at/~werner/bh/.

[5] Werner Benger. Voids: Der Einfluss der kosmologischen Konstanten
auf die Vakuumblasen im expandierenden Universum. Master’s thesis,
Leopold Franzens Universität Innsbruck, 1997.

[6] Werner Benger. Visualization of General Relativistic Tensor Fields via
a Fiber Bundle Data Model. PhD thesis, FU Berlin, 2004.

[7] Werner Benger. Light++ license.
http://svn.origo.ethz.ch/wsvn/f5/doc/copyright.html, 2010.

[8] Werner Benger. The Fiber Bundle HDF5 Library.
http://www.fiberbundle.net, 2010.

[9] Werner Benger, Hauke Bartsch, H.-C. Hege, H. Kitzler, A. Shumilina,
and A. Werner. Visualizing Neuronal Structures in the Human Brain via
Diffusion Tensor MRI. International Journal of Neuroscience, 116(4):pp.
461–514, 2006.

215

http://www.photon.at/~werner/bh/
http://www.photon.at/~werner/bh/


BIBLIOGRAPHY 216

[10] Werner Benger, Andrew Hamilton, Mike Folk, Quincey Koziol, Simon Su
Princeton, Erik Schnetter, Marcel Ritter, and Georg Ritter. Using ge-
ometric algebra for navigation in riemannian and hard disc space. In
Vaclav Scala and Dietmar Hildenbrand, editors, GraVisMa 2009 - Com-
puter Graphics, Vision and Mathematics for Scientific Computing, 2009.
submitted.

[11] Werner Benger, Georg Ritter, and René Heinzl. The Concepts of VISH.
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Appendix B

Definition of Fiber Bundles

Here follows the missing mathematical definition of fiber bundles. As the
concept of fiber bundles was more an inspiration than a strict mathematical
basis for developing the Fiber Bundle library and the F5 file format I decided
to move the according definitions to the appendix.

Definitions are taken from [49] and [6], where more in depth information
can be found.

Definition 5:
A subset A ⊆ X of a topological space (X, τ) is a neighborhood of an
element of p ∈ X iff it contains an element O of τ that contains p:
A ⊆ Xυ(p)⇔ ∃O ∈ τ : p ∈ O,O ⊆ A

Definition 10:
The cartesian product X × Y of two topological spacesX, Y with the
respective neighborhood sets υ(x) ⊂ P(X), νy ⊂ P(Y ) of the points x ∈ P ,
y ∈ P is a topological space, if the neighborhood sets υ(x, y) of the point
(x, y) ∈ X×Y are given by υ(x, y) = {U ∈ υ(x), V ∈ ν(y) : U×V ⊂ W : W}.

Definition 50:
Let E and B being topological spaces and f : E → B be a continuous map.
(E,B, f) is called a fiber bundle, if there exists a space F , such that the
union of the inverse image of f of a neighborhood Ub ⊂ B of each point b ∈ B
is homeomorph to Ub × F :
(E,B, f) fiber bundle ⇔ ∃F : ∀b ∈ B : ∃Ub : f−1(Ub) ' Ub × F ”[6]
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Appendix C

Related Publications

During the work on the thesis I was involved in four related publications: [1],
[12], [10] and [16]. I participated at the WSCG (Winter School of Computer
Graphics, [53]) in Plzen, Czech Republic in 2009 and 2010 and presented the
communication paper [1] during the conference.
The publications are included here in the appendix.
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ABSTRACT 
We describe a novel approach to treat data from a complex numerical simulation in a unified environment using 
a generic data model for scientific visualization. The model is constructed out of building blocks in a hierarchical 
scheme of seven levels, out of which only three are exposed to the end-user. This generic scheme allows for a 
wide variety of input formats, and results in powerful capabilities to connect data. We review the theory of this 
data model, implementation aspects in our visualization environment, and its application to computational fluid 
dynamic simulation of flow in an impeller-stirred tank. The computational data are given as a velocity vector 
field and a scalar pressure field on a mesh consisting of 2088 blocks in curvilinear coordinates. 

Keywords 
Computational fluid dynamics, data model, stream lines, scientific visualization. 

1 INTRODUCTION 
Computational fluid dynamics (CFD) has advanced 
significantly in the last few years and can now 
provide high fidelity temporally and spatially 
resolved numerical data. This data is based on 
meshes that range from a few million cells to tens of 
million cells, and for several hundred thousand time 
steps, with data files that are of the order of terabytes. 
A key challenge therefore is the ability to easily and 
cost-effectively mine this data for key features of the 
flow field and to display these spatially evolving 
features in the space-time domain of interest. In this 
work, we present an integrated interdisciplinary 
effort that takes utilizes of a generic approach to 
handle scientific data sets leading to new 
visualization capabilities in a natural way.  
The CFD dataset is obtained from a large eddy 
simulation (LES) of flow inside a stirred tank reactor 
(STR), such as depicted in Figure 1. The STRs are 
widely used as mixing devices in chemical industry. 
The STR that we investigated here is a cylindrical 

tank with a hemispherical 
bottom, vertical baffles 
mounted along the 
cylindrical walls, and 
rotating impellers 
consisting rectangular 
blades with 45° pitch 
angle mounted on a shaft 
passing through its 
center, see Figure 2. 
As the impeller rotates, 
its blades pump the fluid 
axially downward 
towards the bottom of the 
tank. The fluid-jet then 

hits the hemispherical bottom wall and sets in a 
circulating motion of fluid within the tank promoting 
mixing between the top and the bottom of the tank.  

Figure 1: Stir Tank 
(Courtesy Dow Chemicals)

The calculations are 
done on a multi-block 
curvilinear mesh as 
shown in Figure 3. 
Calculations are done 
on nearly three 
million cells using a 
multi-block body 
fitted finite volume 
flow solver. Since the tank contains a set of impeller 
blades that are rotating and also contains stationary 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to 
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and/or a fee. 

Figure 2: Impeller 
geometry 
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features such as baffles on the outer walls, special 
algorithms (Immersed Boundary Methods) are used 
to accommodate moving interfaces. The method 
intrinsically uses a fixed curvilinear mesh fixed to the 
stationary features of the geometry and tracks or 
flags the location of the nodes adjacent to the moving 
surfaces or boundaries. At these flagged nodes, 
forcing terms/interpolations are performed to satisfy 
the boundary conditions at the moving surfaces. This 
approach has been extensively tested in an earlier 
communication [TRHA07] where computational 
solution for a similar stirred tank flow has been 
validated with experimental observations. 
The visualizations presented here show the axial 
pumping as well as the circulation zones suggesting 
the mechanisms of fluid mixing inside the tank. As 
the impeller blade moves, the fluid jet stream coming 
out of the top and side wall of the impeller blade 
interact with each other to form a vortical motion 
following which fluid elements move in azimuthal 
direction [RA07]. These vortex structures are 
identified from the existences of pressure minima. 
While traditional commercial visualization packages 
such as Tecplot (www.tecplot.com) and Ensight 
(www.ensight.com) are commonly used for 
visualization, they have inherent limitations. It is 
therefore important to be able to develop 
sophisticated visualization capabilities that allow a 
variety of features and controls not commonly 
available with the commercial software. The VISH 
visualization environment [BRH07] employed here 
has been designed to allow a step in this direction. 

2 DATA MODEL CONCEPT 
“A common denominator for scientific data already 
exists, we just have to use them.” was the paradigm 
under which Butler & Pendley [BP89] proposed the 
mathematics of fiber bundle as a foundation for a 
data model that is able to describe all cases needed 
for scientific visualization in a common way, since 
the mathematics behind all the different 
implementation is an universal language of science 

already. Yet a common data model has hardly been 
used, with the IBM Data Explore one of the few 
exceptions. The idea of using a fiber bundle as 
inspiration for a common data model has been 
revived by Benger [Ben04] to handle the complexity 
of data stemming from general relativity. These 
concepts have been built upon and further refined by 
Heinzl [HEI07] to develop generic software 
components. In these approaches, concepts have been 
based on the mathematics of topology and 
differential geometry to describe data sets. 

2.1 Mathematics of Fiber Bundles 
A fiber bundle is in the mathematical sense is set of a 
total space E and a base space B with a projection 
map f such that the union of fibers of a neighborhood 
U of each point of B is homeomorphic to U×F with F 
the so called fiber space and the projection of U×F is 
U again. It is also said that the space F “fibers” over 
the base space B. If the total space E can be written 
globally as E=B×F, then E is called a “trivial 
bundle”. The paradigm is that numerical data sets 
that are usually needed for scientific visualization can 
be formulated as trivial bundles. In practice it means 
that we may distinguish data sets by their properties 
in the base space and the fiber space. At each point of 
the – discretized – base space we have some data in 
the fiber space attached.  

Figure 3: Boundaries of the 2088 curvilinear blocks 
of the computational mesh 

The structure of the base space is described as a CW-
complex, which categorizes the topological structure 
of an n-dimensional base space by a sequence of k-
dimensional skeletons, with the dimensionality of the 
skeletons ranging from zero to n. These skeletons 
carry certain properties of the data set: the 0-skeleton 
describing vertices, the 1-skeleton the edges, 2-
skeleton the faces, etc., of a triangulation of some 
mesh. For structured grids the topological properties 
are given implicitly.  
The structure of the fiber space is (usually) not 
discrete and given by the properties of the 
geometrical object residing there, such as a scalar, 
vector, co-vector, tensor. Same as the base space, the 
fiber space has a specific dimensionality, though the 
dimensionality of the base space and fiber space is 
independent. If the fiber space has vector space 
properties, then the fiber bundle is called a vector 
bundle. The most simple vector bundle is the 
tangential bundle of a manifold, which consists of 
the manifold as base space and the space of 
tangential vectors at each point. With n the 
dimensionality of the manifold, the dimension of the 
tangential bundle is 2n. 
Basically a fiber bundle is a set of points with 
neighborhood information attached to each of them. 
An n-dimensional array is a very simple case of a 
fiber bundle (with neighborhood information given 
implicitly). 

http://www.tecplot.com/
http://www.ensight.com/


2.2 Benefits of Fiber Bundles 
The concept of a fiber bundle leads to a natural 
distinction of data describing the base space and data 
describing the fiber space. This distinction is not 
common use in computer graphics, where topological 
properties (base space) are frequently intermixed 
with geometrical properties (coordinate 
representations). Operations in the fiber space can 
however be formulated independently from the base 
space, which leads to a more reusable design of 
software components. Coordinate information, 
formally part of the base space, can as well be 
considered as fiber, leading to further generalization. 
The data sets describing a fiber are ideally stored as 
contiguous arrays in memory or disk, which allows 
for optimized array and vector operations. Such a 
storage layout turns out to be particularly useful for 
communicating data with the GPU using vertex 
buffer objects: fibers are basically vertex arrays in 
the notation of computer graphics. 
 

2.3 The 7-Level Hierarchy 
In the data model implementation of [Ben04] data are 
formulated in a graph of maximally seven levels, 
each level representing a certain property of the 
entire data set. These levels, constituting a “Bundle”, 
are: 

1. Slice 
2. Grid 
3. Skeleton 
4. Representation 
5. Field 
6. (Fragment) 
7. (Compound Elements) 

Actual data arrays are stored only below the “Field” 
level. An actual data set is described by which data 
sets exist in which level. The actual meaning of each 
level is described elsewhere [Ben04], [BRH07], 
[Ben08]. Only two of these hierarchy levels are 
exposed to the end-user, these are the “Grid” and 
“Field” levels. 

2.4 Bundles, Grids and Fields 
An entire dataset, including all time steps or any 
information given on a parameter space in general, is 
denoted as a Bundle, following the mathematical 
term of a fiber bundle. The objective is to formulate 
all data that is used for scientific visualization within 
this Bundle. A Grid is subset of data within the 
Bundle that refers to a specific geometrical entity, for 
instance a mesh carrying data such as a triangular 
surface, a data cube, a set of data blocks from a 
parallel computation, etc. A Field is the collection of 
data sets given as numbers on a specific topological 

component of a Grid, for instance floating point 
values describing pressure or temperature. 
The names of Grids and Fields are arbitrary and 
specified by the user. All other levels of the data 
model have pre-defined meanings and values which 
are used internally to describe the properties of the 
Bundle as construction blocks. The usage of these 
construction blocks constitutes a certain language to 
describe a wide range of data sets. For instance, a 
Slice is identified by a single floating point number 
representing time (generalization to arbitrary-
dimensional parameter spaces is possible); a Skeleton 
is identified by its dimensionality, index depth 
(relationship to the vertices of a Grid) and refinement 
level; a Representation is identified via some 
reference object, which may be some coordinate 
system or another Skeleton. The meaning of such 
identifiers is only used internally, but transparent to 
the user. The lowest levels of Fragments and 
Compound describe the internal memory layout of a 
Field data set and are optional. They are described in 
detail in [Ben08]. 
 

2.5 Formulating Data 
The existence of data sets in the hierarchy of a 
Bundle defines a data set. We will give some 
examples here on the data sets that have been 
involved in our work with the stir tank computational 
fluid dynamics data. 
 

2.5.1 Isosurface 
An isosurface is the explicit polygonal representation 
of the points where a possibly time-dependent scalar 
field given on a volumetric manifold has constant 
value. It consists of the following properties: 

1. A sequence of Grids, one for each time step 
2. Coordinates for each vertex, which is a field 

on the Skeleton of index depth 0 
(“Vertices”) on each grid, as represented in 
Cartesian coordinates. 

3. Connectivity information for each triangle, 
which is a field on the Skeleton of 
dimension 2 and index depth 1 (faces) on 
each Grid, as represented in the Vertices. 

4. Normal vectors define a vector field 
(precisely: a bi-vector or co-vector field) 
given on the Vertices Skeleton of the Grid. 

5. Optional data fields on the vertices, such as 
another 3D field mapped on the surface. 

An Isosurface is a sequence of Grid objects with two 
Skeletons defined on it, with the Skeleton for the 
Vertices carrying two or more fields. 



2.5.2 Line Set 
A set of lines, such as the result of the computation 
of stream lines of a vector field, is given by 

1. A sequence of Grids, one for each time step, 
for the set of lines valid at each time step 

2. Coordinates for each point along the lines, a 
field on the Skeleton of index depth 0 

3. Connectivity information for the points 
building up a line, which is a field on the 
Skeleton of dimension 1 and index depth 1 
(edges). 

4. Tangential vectors define a vector field 
given on the Vertices Skeleton of the Grid 

5. Optional data fields on the vertices may 
exist, as retrieved from a 3D field mapped 
on the surface. 

A set of lines is very similar to an isosurface in this 
data model, though a different Skeleton on the Grid 
objects is employed. 

2.5.3 Multiblock Data 
The numerical data as provided by the computational 
fluid simulation are given as a collection of 2088 
three-dimensional arrays describing coordinate 
location, pressure and fluid velocity for each grid 
point. These fields are all fibers on the vertices in the 
fiber bundle data model, where we also treat the 
coordinates as a field over the vertices. As the 
topological structure is regular the edges and faces 
are given implicitly. The decomposition of the data 
into blocks is represented as the internal memory 
layout structure of the fields, thus as field fragments 
visible in the 6th level of the data hierarchy. The 
topological structure of the blocks is thereby 
transparent to the user, but algorithms operate on 
collections of arrays instead of contiguous arrays, 
which is relatively straightforward extension to 
existing algorithms such as the computation of 
isosurfaces. To store information that is specific to 
each block, we consider each block as a collection of 
volume cells. Volume cells are topologically 3-
Skeletons in a triangulation, and of index depth 1 in 
the fiber bundle data model. Collections of such 
elements are thus of index depth 2. Fibers on this 
Skeleton are thus a natural place to store e.g. the 
geometrical bounding box information for a block, or 
the min/max data range of a scalar field (which 
speeds up repeated isosurface computations) The 
layout of a multiblock data set thus consists of: 

1. A sequence of Grid objects, one for each 
time step 

2. A coordinate field on the Vertices Skeleton, 
which is shared among all time steps if the 
geometry remains constant over time 

3. A scalar field on the Vertices Skeleton 

4. A vector field on the Vertices Skeleton 
5. A Skeleton of dimension 3 and index depth 

2 describing a collection of volume 
elements, which are the respective blocks. 

6. Optional scalar fields on the (3,2) Skeleton 
with min/max information of a scalar field 
per block, or coordinate fields for bounding 
box. 

 

2.6 Data Operations 
Given the certain components constituting the data 
model, we may formulate abstract operations among 
such components. These operate on abstract high-
level objects without requirement to know the 
internal structure of the objects, though their concrete 
implementation will have to deal with them. 

2.6.1 Isosurface Computation 
The computation of an isosurface is an operation that 
takes a Field as input and yields a Grid object, and 
will be called for each instance of a time sequence. 
The operation is parameterized by some isolevel 
value. Certain conditions must be fulfilled by the 
input field for this operation to succeed, such as 
being a scalar-valued field residing on a regular grid. 
However, more advanced implementations rather 
than the standard marching cubes may well be 
formulated through the same interface, such as direct 
computation of magnitude isolevels of vector fields, 
or isosurface computation on tetrahedral grid. The 
high-level operation 

Grid = ComputeIsosurface(Field, float); 

remains the same, and no changes in the user 
interface are required. For instance, more advanced 
operations could be invoked via some runtime plugin 
mechanism, transparent to the user, as it is supported 
by VISH. 
 

2.6.2 Grid Evaluation 
Given Field data on one Grid instance, like a 3D 
volume, they may be evaluated on another Grid, like 
a surface or a line set. Such is formulated as an 
EvalGrid operation which requires specification of a 
destination grid and a source field (implicitly given 
on another Grid object): 

Field = EvalGrid(Grid Dest, Field Source); 

Certain constraints may apply to the input Grid, since 
the evaluation of a field is not possible on an 
arbitrary Grid. For instance, data given on a surface 
cannot be uniquely extrapolated into an entire 3D 
volume. However, a wide range of operations can be 
specified through this common API. 
 



3 STREAMLINE STRATEGIES 
Visualizing vector fields is a common need in CFD 
for investigating velocity fields. [LaH05] describes 
several tools for investigating CFD data. [PWS06] 
shows the combination of different geometry based 
and texture based techniques in a CFD application. 
More applications of texture based vector field 
visualization can be found in [LEG]. 
With more complicated and large data sets it is 
increasingly important to have a variety of tools for 
feature extraction and data exploration at hand. Thus, 
developing a flexible framework seems the right way 
to meet the increasing requirements effectively. We 
use streamlines in our approach because it is a well 
known standard technique and they can be described 
well within the context of fiber bundles. 
The challenge here was to deal with the multi-block 
curvilinear data structure (as shown in Figure 3) and 
to verify the applicability of the Fiber Bundle data 
model. Using this model, our streamline visualization 
implementation modules separate into four groups: 
Vector Field Data, Seed Point Data, Streamline 
Computation and Line Rendering. The software 
modules are connected in a directed graph 
communicating data using Grids and Fields. This 
allows to exchange modules by other modules (high 
reusability) and to combine modules in different 
ways (high flexibility).The Streamline Computation 
Module takes a vector Field and an arbitrary Grid 
defining the seed points as inputs and outputs a Line 
Set as Grid. 

 This 
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The computation of the streamline involves finding 
the location of a given world position in the dataset 
by identifying its block, cell and local curvilinear cell 
coordinates. These local coordinates are then used for 
linear interpolation of the vector field. The 
interpolated vector is used to advance to the next 
streamline point of the streamline, another world 
position.  

The computation of the streamline involves finding 
the location of a given world position in the dataset 
by identifying its block, cell and local curvilinear cell 
coordinates. These local coordinates are then used for 
linear interpolation of the vector field. The 
interpolated vector is used to advance to the next 
streamline point of the streamline, another world 
position.  
Firstly, a kD-Tree is employed to find blocks, which 
might contain the world position, secondly a look up 
data structure called UniGridMapper that maps a 
uniform grid cell to curvilinear cells that might 
contain the world position is used and finally a 
Taylor approximation and Newton iteration, as 
described in [STA98], retrieves the local curvilinear 
cell coordinates. 

Firstly, a kD-Tree is employed to find blocks, which 
might contain the world position, secondly a look up 
data structure called UniGridMapper that maps a 
uniform grid cell to curvilinear cells that might 
contain the world position is used and finally a 
Taylor approximation and Newton iteration, as 
described in [STA98], retrieves the local curvilinear 
cell coordinates. 
Besides storing the calculated stream lines as Line 
Sets in the output Grid additional Fields are stored 
that carry the information necessary for interpolation. 
Block IDs and local cell coordinates are stored. This 
information can then be used by other independent 
modules to evaluate other data Fields on the 
streamline Grid, e.g. to evaluate a pressure Field. 
The final Line Rendering module employs 
illuminated stream lines, similar to those described in 
[SZH97] 

Besides storing the calculated stream lines as Line 
Sets in the output Grid additional Fields are stored 
that carry the information necessary for interpolation. 
Block IDs and local cell coordinates are stored. This 
information can then be used by other independent 
modules to evaluate other data Fields on the 
streamline Grid, e.g. to evaluate a pressure Field. 
The final Line Rendering module employs 
illuminated stream lines, similar to those described in 
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3.1 Defining Seed Point for Streamlines 3.1 Defining Seed Point for Streamlines 
To visualize the characteristics of a certain vector 
field by streamlines it is important to find good 
starting points (seed points) for the streamline 
integration. 

To visualize the characteristics of a certain vector 
field by streamlines it is important to find good 
starting points (seed points) for the streamline 
integration. 

3.1.1 Grid Convolver 3.1.1 Grid Convolver 
An operation called Grid Convolver allows the user 
to create sophisticated seed point geometries by 
‘convoluting’ vertices of an input Grid with a set of 
parameters into an output Grid, similar to the 
mathematical convolution operation. Possible Grid 
convolution operations are Point, Line, Rectangle, 
Circle, Ellipsoid and Uniform Grid. 

An operation called Grid Convolver allows the user 
to create sophisticated seed point geometries by 
‘convoluting’ vertices of an input Grid with a set of 
parameters into an output Grid, similar to the 
mathematical convolution operation. Possible Grid 
convolution operations are Point, Line, Rectangle, 
Circle, Ellipsoid and Uniform Grid. 
Figure 5 demonstrates a setup for creating seed 
points involving three Grid Convolvers. The first 
Grid Convolver(a) gets one point as input Grid. It 
‘convolutes’ this input on a vertical Line with a 
subdivision of three points. This is then outputted 
into the second Grid Convolver(b) which 
‘convolutes’ the three-point-Line on its horizontal 
two-point-Line. This results in the output Grid seen 
in (c). A final Grid Convolver(d) now ‘convolutes’ 
on its Circle geometry resulting in the final seed 
points in the output Grid of (d), shown in (e). 
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‘convolutes’ this input on a vertical Line with a 
subdivision of three points. This is then outputted 
into the second Grid Convolver(b) which 
‘convolutes’ the three-point-Line on its horizontal 
two-point-Line. This results in the output Grid seen 
in (c). A final Grid Convolver(d) now ‘convolutes’ 
on its Circle geometry resulting in the final seed 
points in the output Grid of (d), shown in (e). 
Since the module can be connected to any other 
modules that output Grid objects it is possible to 
create many different seed geometries. The module 
thus is highly reusable and flexible. Figure 4 
illustrates a typical dataflow involving Field and 
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Grid objects. Figure 6, 7, and 8 demonstrate how this 
module was used to investigate the stir tank velocity 
field with different settings of position and rotation 
and different number of connected Grid Convolvers. 

 

 
Figure 6: Streamlines with seed points on a circle. 

 Figure 7: Streamlines emitted from seed points 
on a circle of circles of lines by using three Grid 
Convolvers. 
 

 
Figure 8: Streamlines emitted on an array of lines. 

 
Figure 9: Space-filling streamlines in the STR 

Besides interactively specifying seed points it is also 
possible to utilize other seeding methods such as 
those found in AMIRA [SWH05], where a threshold 
on a scalar field can specify seed points for a vector 
field, or similar to Weinkauf’s method of computing 
the curvature measures of a vector field to find 
critical regions as indicators where streamlines were 
most interesting [WTH02]. Even a full coverage of 
the entire volume may provide worthwhile 
information (Figure 9). 

3.1.2 Seed Points by Iso Surfaces 
The usage of a Grid input at the Streamline 
Computer allows usage of arbitrary compatible Grid 
objects for defining seed points. For example, the 
Grid of an iso surface (the vertices of the triangular 
surface) computed on the pressure scalar field can be 
used as input, as shown in Figure 9 and Figure 10. 
With such streamline seeding the vector field close to 
the surface can be explored, similar to a texture based 
technique applied to the surface such as [LSH04]. 
This is a unique feature of VISH that can potentially 
be exploited to better understand the flow physics. 

a) b) 

c) d) 

e) 
Figure 5: Example of 

constructing seed points 
by connecting three 

Grid Convolver modules 
a), b) and d). 



4 PERFORMANCE RESULTS 
Computation of 100 streamlines in the given 
multiblock dataset of 2088 curvilinear blocks 
required about 7 seconds using an Euler integration 
scheme for 100 steps on a Intel Xeon CPU, 2.5GHz. 
Tecplot required 35 seconds using a comparable 
setup. We could not compare with Amira, since this 
data type is not supported there. The computation 
time of the isosurface crucially depends on the 
chosen level, and is below 1/30th second for most 
values, but may require up to 2 seconds in particular 
cases. Computing streamlines from the isosurface 
vertex requires about 5-10 seconds for the setup as 
shown in Figure 11, but will linearly depend on the 
chosen length. Future improvements will utilize 
higher order integration schemes and parallelization, 
for which we expect to be able to reduce computation 
times under one second. The frame rates for 
rendering itself once the streamlines are computed 
are under 1/30th of a second in all cases except Figure 
9, where we got about 10 frames per second on an 
NVidia Quadro FX 5600 graphics board. 

5 DISCUSSION 

 
Figure 10: Detail of the emission of streamlines 
from the pressure isosurface. 
Figure 10 shows velocity vectors adjacent to the 
impeller blades. It can be clearly seen that as the 
impeller rotates in the clockwise direction, the 
pitched blade surfaces force the fluid in its surface-
normal direction imposing both radially outward and 
downward velocities on the flow along with an 
azimuthal velocity component due to its rotation. The 
pressure isosurface depicts the boundary layer 
formed over the impeller blade surface and its 
evolution downstream. Circular depressions (marked 
as P in Figure 11) can be observed in the pressure 
isosurface. These depressions point to local pressure 
minima suggesting formations of vortical structures 
in the direction opposite to the impeller rotation. 
These vortices (commonly termed as trailing-edge 

vortices) convect fluid in the azimuthal direction and 
play a key role in mixing within the tank.  

 
Figure 11: Velocity micro-streamlines and 

pressure isosurfaces over the impeller blade 
Figure 12 shows the streamlines coming out of an 
impeller blade. The downward pumping from the 
impeller is clearly observable. Also, the streamlines 
are observed to bend near the hemispherical bottom 
of the tank and establish a circulating motion. The 
colors along the streamlines indicate the residence 
time of the fluid particles. The suction of the upper 
fluid is identified by the green color, the yellow 
colored impeller jet stream has both radial and axial 
component as the streamlines show almost a 45° 
bend. Later (orange color) these lines hit the bottom 
of the tank and bend upwards (red coloration) and the 
fluid is again convected to the upper part of the tank. 
This circulation is how the fluid mixing operation 
takes place in the stirred tank.  

 
Figure 12: Streamlines over the tank volume 



6 SUMMARY 
We have described and applied the concept of “Grid 
objects” as elementary tools within a highly modular 
visualization environment to provide powerful 
seeding mechanisms for streamline computation to 
visualize flow in a stirred tank. Operations such as 
“Grid convolution” and seeding by pressure 
isosurfaces are natural consequences of utilizing the 
described data model. It is argued here that this 
approach offers specific capabilities that several 
other visualization platforms are unable to provide. 
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Abstract

The concept of a pipeline has become a quite common way of thinking
about the process of visualizing data. In this article we discuss the inher-
ent limits of this concept and argue for the need to expand this concept
for achieving higher performance and convenience to the end user. While
the traditional model of a visualization pipeline describes the execution
of some data flow, it is most suitable for a static data-set. However for
time-dependent data (e.g.) we intend visualizations to be as fast in time
as they are in space. The pipeline model does not recognize similarity and
repetition of operations which is essential to achieve the desired perfor-
mance. The pipeline model thus needs to be extended to efficiently cover
multiple traversals and caching of intermediate results, which we call the
Visualization Cascade. It will be demonstrated in practice within its im-
plementation in the VISH visualization environment.

1 Introduction

The process of visualizing data begins with the source data containing the in-
formation to be visualized and ends, finally, with a derived image representing
the data. To arrive at the image the data needs processing, like being searched
or filtered, depending on the nature of the data and the analysis requirements.
It then must be mapped to graphical entities that are subsequently rendered
into an image. In [Haber & McNabb, 1990] the authors identify and refine
the general operations data undergoes in the process of creating visualization.
The data flows in a pipeline through a chain of stages, as depicted in Fig-
ure 1, and finally, results in a representing image. The pipelined model they
present, is known as the Haber-McNabb model of the visualization pipeline and



has been a widely successful concept for the design of visualization software.
Several well known software packages have been built upon this idea, exam-
ples include AVS [Upson et al., 1989], VTK [Schroeder et al., 1997], IRIS Ex-
plorer [Foulser, 1995], OpenDX [Treinish, 1997] (for a more complete list see
[A.A. Ahmed, 2007]).

Data Source

Dataflow

Enrichment/
Enhancement

Derived
Data

Abstract
Viz Object Image

Viz Mapping Rendering

Figure 1: Visualization Pipeline: Data flows through the pipeline while opera-
tors modify the stream. They extract, filter, map and render data. Finally the
pipeline outputs is an image or image stream.

While trying to understand the data through exploratory visualization, as
outlined in [Upson et al., 1989, Card et al., 1999], a flexible and easy to use
mechanism to enter the operation on the data into the software is needed. Ex-
ploring and trying to understand as much as possible from the data by inspect-
ing them, includes making frequent changes to parameters of the visualization,
sometimes even to the parameters or models used to create the data. Being able
to easily change and adapt the parameters and, in addition, derive the visualiza-
tion results fast, is of great importance as it helps to decrease the time needed
for one investigative cycle. For some data, features might only become visible if
it is possible to navigate interactively inside the parameter space.

The pipeline concept has been found to be well suited and intuitive to under-
stand when used to represent the flow of data in a user interface. The user can
graphically construct a visualization pipeline by interconnecting different stages
through attaching a pipeline to nodes. An early example of such a graphically
programming interface has been implemented in ConMan [Haeberli, 1988], more
modern examples include the Spiegel framework [Bischof et al., 2006], or the
graphical user interface of LabVIEW [Johnson & Jennings, 2001] in which a
data stream, mainly originating from measurements, can be connected to pro-
cessing nodes or the gstreamer framework [Black et al., 2002] in which multi-



media data is handled this way.
Once the structure of the pipeline has been set up, it needs to be executed.

Different schemes have been implemented to derive the final image. When us-
ing implicit execution, as applied in VTK [Schroeder et al., 1997], data is time
stamped and only “upstream” nodes are executed, if demanded. Explicit execu-
tion, as used in the IRIS Explorer [Foulser, 1995], relies on external management
of the data processing nodes to decide which needs re-computation.

The flow of data is initiated in two principal ways. In the “pull” case, a
downstream receiver requests the data from an “upstream” node. In a “push”
case, the “upstream” node would forward the data to the next stage in the
pipeline as soon as it is available. Also a mixed version can be implemented, as
they are independent.

If we want achieve full interactivity in the visualization of large data-sets
we find that the current design of pipelines and their execution models are not
well suited to meet the requirements. Response times to changes of parameters
are not fast enough, as data travels too slowly through the whole pipeline to
reach an interactive frame rate, as described in [Shen, 2006] for the case of time
dependent data.

Not only for a change in the time parameter, but for any change made
to a parameter of the visualization, the whole visualization pipeline has to be
executed for every single frame. As this often exceeds the time required for
an interactive frame rate, a common solution is to apply off-line rendering.
Frames of an animation sequence are rendered for later viewing, but interactively
exploring the data would be more desirable and would also possibly increase the
chance of gaining further understanding of for example spatial-temporal features
of the data.

Working toward the visualization challenges one (“Make the spatial and tem-
poral resolution of visual displays indistinguishable from physical reality.”) and
four (“Optimize physical resources used to perform visual interactions.”), as de-
scribed in [Hibbard, 1999] and incorporating the user wishes for interactivity,
here we present an extended pipeline model that utilizes the structure of mod-
ern graphics hardware to minimize the time needed to derive the final image.
We propose that, by introducing a flexible caching mechanism, it is possible
to increase re-usage of already processed data, especially in between different
pipelines constructed for different parameter sets. In combination with a data
storage model and utilizing GPU memory, full interactivity on a data-set of the
size of 17 GB, containing 1.6 million points in 200 time steps [Benger, 2008],
has been achieved.

2 The Visualization Cascade

The major drawback of the concept of the visualization pipeline is that it does
not talk about caching of results. If an operation similar to an earlier is to be
repeated, we would not want to have the entire pipeline to be traversed again.
Only those sections that have changed shall be re-computed. A typical usage



scenario is running an animation of time-dependent data. The “conventional
way” is to load each time step, pump it through the visualization pipeline to
create a pixel frame for each time step, and then eventually watch the evolution
of the data as a movie. Many features of a dynamic data-set are only appreciated
when viewed at interactive speeds of e.g. 30 frames per second, but usually
the traversal of the entire visualization pipeline is much slower than 1/30th of
second.
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Figure 2: Exploring a full parameter space of some data-set requires parallel
traversal of the data flow - resulting in a cascade rather than a single pipeline
traversed repeatedly.

While speeding up the initial traversal of the pipeline might just be impos-
sible, results of previously computed operations can be cached up to available
RAM. We may consider the rendering of an animation as the execution of a se-
quence of multiple parallel visualization pipelines. The execution nodes of each



pipeline reside on the same level. At each such node we might need to cache
some result of a previous operation. We may think of such a system as a cascade
of data flowing down a water fall, in many parallel ways and intermediate levels
where data reside to be cached.

Furthermore, data may eventually flow from one stream to another one,
i.e. the “visualization pipeline” from one time frame may employ parts of a
visualization pipeline from another time frame as well. Such may be the case
when fusing data-sets given at different time intervals, for instance a data-set
that is sampled at T=0.0, T=10.0 and another one at T=0.0, 1.0, 2.0, etc. If
interpolation in time is not requested but rather the “most recent” timestep
should be displayed, then at T=1.0 the coarse data-set at T=0.0 would be used,
which does not require traversal of the viz pipeline for the coarse data-set all
they way up to its source. A new computation will only be required when both
data streams from the two pipelines will merge.

We may consider “time” as a parameter that is orthogonal to the flow of the
visualization pipeline. It rather parameterizes the visualization pipeline (a lin-
ear, one-dimensional data flow) and unfolds it into multiple instances, thereby
creating the visualization cascade (a two-dimensional flow of data). At each
cascade level, there will be the essential decision when to re-execute the com-
putation or to re-use existing data. This depends on additional parameters that
have been changed since the last traversal. If the data at each level depend on
“time” only, then there is no need for re-computation at all once data exist there
already. However, there may be other parameters as well, such as depending on
user interaction. For instance, when inspecting some time-dependent 3D data
volume, the user-defined threshold level of an isosurface, or the range and color
values of a colormap during volume rendering. In both cases, there is no need to
reload data from disk when repeating an animation over a previous time range.
However, in the case of the isosurface display, the computation of the geometry
has to be re-executed. In the case of the dynamic volume rendering, there is not
even a need to reload data on the graphics card, but only some texture maps
might need to be updated when changing the colors.

While some parameters in the visualization cascade might not require re-
questing data up from the source, others might. For instance, changing the
range of a volume rendering colormap or applying another filter (e.g. a non-
linear filter) may require operating directly on the original data, and thus need
to reload data and full pipeline traversal. We therefore have to distinguish be-
tween two classes of parameters: those that require re-computation, and those
that do not. The efficiency of the visualization cascade will depend on proper
choices at each node, to avoid unnecessary computation but still perform the
essential ones. We will discuss our implementation in the next sections.

2.1 Data Result Caching

Each node within a visualization pipeline is an operation on the data stream. In
an object-oriented environment, it is usually an object with data structures and
member functions. It is straightforward and common use to store computational



data in here. Using this associated node-local space as cache for intermediate
results is an option, but not an optimal one.
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Figure 3: Caching of intermediate results of the data flow through a visualization
pipeline allows to avoid repeating previously performed computations. Instead,
final results may be retrieved from intermediate levels of the visualization cas-
cade.

In our case we utlize Vish [Benger et al., 2007] as visualization environ-
ment, which allows using a so-called fiber bundle data model [Benger, 2004,
Benger et al., 2006, Benger, 2008]. This model is a framework to handle a wide
class of data for scientific visualization within the same structures. It intrinsi-
cally supports time dependency and thereby allows to store intermediate results
within this data model (a data structure available at the data source) rather
then the computational objects themselves.

This approach to store intermediate results directly at the data source (the
so-called “Bundle”) as extension to the source comes with various benefits:

1. The computational nodes are kept completely procedural; they never store
any data itself, and may thus be utilized for any kind of data operation
even stemming from different sources. Data are merely seen as parameters
to the procedure, but not actually “transported” into the object.

2. Another instance of the same procedure would automatically recognize
existing results, as it would store its results in the same location. In the
purely object-oriented approach, objects would not know about the exis-
tence of other instances.

3. Since the data source is equipped with I/O methods, all intermediate
results can be stored on disk and reloaded at a later instance; there is no
requirement to equip each computational node with explicit functionality
to store its own data.



4. With additional data added to the source, they are available to be in-
spected with other procedures or visualization modules. This may well
lead to unexpected discovery and insight into the data itself, with no ad-
ditional cost, but in a natural way. Additional data are just available.

Within VISH, the functionality of an Operator Cache is provided to attach any
kind of data to a data source with minimal requirements. If the data source is
a fiber bundle, then a more specific method can be applied.

2.2 Operator Cache

The “Operator Cache” is a C++ template class used to memorize the result
of some computational operation as implemented by a node of a visualization
pipeline (the “Operator”). This generic approach only fulfills the first property
in the aforementioned list. Hereby the data source has to provide the property
to be an “Intercube” object, as described in [Benger et al., 2007]. Basically this
is an runtime-version of multiple inheritance, which allows to attach additional
objects (“interfaces”) to some container (the “intercube” holding many “inter-
faces”), e.g. an object providing data for visualization.

For instance, if we want to memorize a vector of doubles, then we simply
instantiate the OperatorCache template over this data type:

typedef OperatorCache<std::vector<double> > OC_t;

Now given an InterCube object provided to a computational routine, one may
retrieve an OperatorCache object that may be stored there. If not, we would
need to create one anyway:

void VizNode::compute(InterCube &MyData)
{

OC_t*OC = OC_t::retrieve( MyData, this );
if (!OC) OC = new OC_t();

}

Note that the retrieve function basically has two parameters, the data object
“MyData” and the visualization node. Thus, the operator cache can install a
copy of the requested data with each data object and each visualization node. It
is a unique place where the node may store data outside its own local memory,
as illustrated in Figure 4

The Operator Cache is furthermore related to a set of variable values, a
“ValueSet”. Its purpose is to associate the OperatorCache with such a set of
values. If any of these values has changed upon a repeated call of the viz node’s
compute function on the same data-set then the Operator Cache needs to be
equipped with data from a new computation. For instance we might consider an
operator that computes some isosurface. If the isolevel value or some maximum
number of allowed triangles is changed, then the operator would need to execute
the numerical routine again, otherwise it could just return the data stored in the
Operator Cache. An “OperatorCache::unchanged()” member function checks if
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there are any such differences among the values stored with the OperatorCache
and the current values had occured (it will automatically return “false“ if the
OperatorCache was newly created):

ValueSet*Changeables = new ValueSet();
Changeables->addValue(IsoValue);
Changeables->addValue(NumberOfAllowedTriangles);

if (OC->unchanged( Changeables ) )
{

// do something with the data existing in OC
return;

}
// compute new data and put them into the OC

If there had been changes, then following code is supposed to compute new
data. There may be other parameters that do not require re-computation, such
as another coloring of the resulting isosurface, see Figures 5, 6 and 7. These will
be part of the visualization node, but not be added to the ValueSet that is used
to inspect the Operator Cache. (The actual source code uses a slightly different
syntax as it employs operator overloading to provide a more compact coding.)

2.3 Caching in the Fiber Bundle

When data are available in the fiber bundle, and results are storable in the fiber
bundle, one would not employ the OperatorCache. Rather, any results will be
stored directly in the incoming data structures. To depict how it works, we do
not need to know the entire complexity of the full model. It suffices to know that
there are objects called Bundle and Grid. A Bundle may be accessed with a
floating point value and a string to yield a Grid object. Such a Grid object may
represent a 3D data volume with scalar fields (which is to be identified via some
string), or a triangular surface such as the result of an isosurface computation.
The actual numerical routine “Isosurface” will require a Grid object, a field
name, and a floating point value specifying the isolevel. The schematic code will
look similar to this:
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Figure 5: The execution flow: The first time, the complete cascade has to be
executed. The operators read the data-set from disk, compute the isosurface,
render the surface and composite it to the final image. The separation into
operators is hidden and is not all seen by the user.

Grid VizNode::compute(Bundle&B, double time,
string Gridname, string Fieldname,
double Isolevel)

{
// Construct a unique name for the computational result

string IsosurfaceName = Gridname + Fieldname + Isolevel;
// Check whether result already exists for the given time

Grid IsoSurface = B[ time ][ IsosurfaceName ];
if (!IsoSurface)
{

// No, thus need to retrieve the data volume
Grid DataVolume = B[ time ][ Gridname ];

// and perform the actual computation
IsoSurface = Compute( DataVolume, Fieldname, Isolevel);

// finally store the resulting data in the bundle object
B[ time ][ IsosurfaceName ] = IsoSurface;

}
return IsoSurface;

}

Note that in case an IsoSurface Grid already exists, there is no need to
request a DataVolume object. The operation of requesting such might be effort-
some, including slow disk access (on-demand loading), numerical computation
of the source field, network access, etc. Never are any data actually stored in
the VizNode object itself. In this version, a new geometry is stored for each
time step and each isolevel value. Since these are floating point values, this may
well need to an immense number of surfaces that are stored when exploring
the parameter space of time and isolevel. Therefore, some appropriate memory
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Figure 6: The execution flow: Resulting data flow when changing the isosurface
level parameter. The data-set need not be read from disk again.
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Figure 7: The execution flow: Resulting data flow when changing the color of
the iso surface. The isosurface need not be recomputed again.

management that discards old objects that have not been accessed for a long
time will be mandatory.

2.4 OpenGL Caching

The final stage of producing pixels using modern graphics hardware is loading
data onto the memory of the graphics card (GPU). Once all data that are
required for rendering are transferred to the GPU, pixel generation will be as
fast as possible. Via means of OpenGL, large data at the GPU are modeled as
Display Lists, Textures and VertexBuffer Objects. Framebuffer objects might fall
into this category as well, but we did not consider them yet. While the graphics
memory is limited, it may still provide enough space to also store objects that
are not visible in the currently viewed frame but a previous one. Re-utilizing
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objects already stored in GPU memory is much faster than re-loading objects
from RAM. We may expect so even in case the graphics driver is placing some
object into RAM itself.

D
ataflow

GPU

Figure 9: Caching on the GPU

In contrast to caching RAM data like those on the fiber bundle, GPU data
is only available through some handle within an OpenGL context. It cannot
be stored with the data source. We thus utilize a management system for
the OpenGL handle identifiers that is associated with a viewer, called the
“GLCache”. The GLCache is a mapping from certain keys to an OpenGL iden-
tifier object (internally just an integer). This mapping is three-dimensional and
of the structure:

GLuint DisplayList = GLCache[ Intercube ] [ typeid ] [ ValueSet ];

Hereby, a given GLCache object, a DisplayList identifier can be retrieved by
specifying

1. an arbitrary Intercube object

2. an intrinsic C++ type ID

3. a set of values



The functionality is similar to the OperatorCache, where an InterCube and a
visualization node is utilized to specify a location of the OperatorCache, plus
a set of values used to determine whether re-creation of the data is required.
Here, the storage location of the cached objects is provided by the GLCache,
a parameter that is provided to a visualization object’s render routine. The
InterCube object (which, for instance, is available with each Grid or Field object
within a fiber bundle data-set) is used to find a unique storage location within
the GLCache. The typeid will be the type of the rendering object, such that
multiple instances of the same rendering functionality will automatically be able
to share their OpenGL objects. The set of values will contain all those rendering
parameters which require re-creation of the OpenGL object. A typical rendering
code will (schematically) look like this:

void VizNode::render(GLCache Context, Grid G)
{
ValueSet VS;

// assign cacheable variables into the value set
InterCube&C = G;
GLuint DisplayList = GLCache[ Intercube ] [ typeid(this) ] [ VS ];
if (!DisplayList)

{
DisplayList = glGenLists(1);
glNewList(DisplayList, COMPILE_AND_EXEC);
// do actual rendering of grid data G
glEndList();
GLCache[ Intercube ] [ typeid(this) ] [ VS ] = DisplayList;

}
else

glCallList(DisplayList);
}

A similar synopsis will be applied for OpenGL object types others than dis-
play lists. Some automatic discarding mechanism to ditch unused objects will
be required here as well. Note that in case an OpenGL object already exists for
a given input data-set (here a “Grid” object), then there is no need to actu-
ally request the internal data of such an object and to traverse the associated
visualization pipeline up to its source, such as shown in Figure 10.

3 Conclusion

An universal caching mechanism has been presented. It can be used to extend
the visualization pipeline model (as defined by [Haber & McNabb, 1990]) to
maximize the reuse of computed data and thereby minimizing the response
time of an interactive visualization to parameter changes. The mechanism can
relate computed data for all parameters of the visualization, which make fast
and easy navigation in the whole parameter space possible. Special emphasis
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Figure 10: A GPU cached visualization cascade provides the animation without
expensive data flow.

is given to the time parameter and time depended data. The implementation
demonstration utilizes the Vish framework and also the fiber-bundle model. By
incorporating the described GPU caching mechanism full interactivity when
browsing an astrophysical data set of 17GB - containing 1.6 million points in
200 time steps - has been achieved. This visualization was run on a Linux 64 bit
workstation equipped with a eight 1.6GHz cores (only one of which was used
by Vish), 8 GB of RAM and a Geforce Quattro FX5600 graphics card with
1.5GB of GPU memory. The caching mechanism accelerated the visualization
to a achieve interactive rates of 30 frames per second when traversing in time
in addition to arbitrary spatial camera movement. The first access of the data
including reading from disk and processing data in contrast required a couple
of seconds for each newly accessed time step. It was also possible to maintain
the interactive frame rate while changing parameters such as color-maps and
density shape-functions used for volume rendering.
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ABSTRACT
A “vector” in 3D computer graphics is commonly under-
stood as a triplet of three floating point numbers, eventually
equipped with a set of functions operating on them. This
hides the fact that there are actually different kinds of vec-
tors, each of them with different algebraic properties and
consequently different sets of functions. Differential Geome-
try (DG) and Geometric Algebra (GA) are the appropriate
mathematical theories to describe these different types of
“vectors”. They consistently define the proper set of opera-
tions attached to each class of “floating point triplet” and al-
low to derive what meta-information is required to uniquely
identify a specific type of vector in addition to its purely
numerical values. We shortly review the various types of
“vectors” in 3D computer graphics, their relations to rota-
tions and quaternions, and connect these to the terminology
of co-vectors and bi-vectors in DG and GA. Not only in
3D, but also in 4D, the elegant formulations of GA yield
to more clarity, which will be demonstrated on behalf of
the use of bi-quaternions in relativity, allowing for instance
a more insightful formulation to determine the Newman-
Penrose pseudo scalars from the Weyl tensor.

1. INTRODUCTION
Geometric Algebra and the sometimes mystified concept
of spinors eases implementation and intuition significantly,
both in computer graphics and in physics. We demonstrate
the concrete application of these concepts in two indepen-
dently developed computer graphic software packages, where

Geometric Algebra is used for navigating the camera posi-
tion in space and time. Another application example is given
by a simulation code solving Einstein’s equation in gen-
eral relativity numerically on supercomputers, outputting
the Newman-Penrose pseudo scalars as primary quantities
of interest to study gravitational waves, both for visualiza-
tion and observational verification.

Geometric Algebra moreover provides means to describe
how the metadata information required per “vector” can be
provided in persistent storage. Given large datasets that are
expensively collected or generated by simulations requiring
millions of CPU hours, it is increasingly important and diffi-
cult to be able to share and correctly interpret such datasets
years after their generation, across different research groups
from different fields of science. A unique, standardized,
extensible identification of the geometric properties of the
dataset elements is a necessary pre-requisite for this. simi-
lar to the way in which the IEEE standard for floating point
values enables sharing floating point values. We utilize the
mechanisms as provided by the HDF5 library here, a generic
self-describing file format developed for large datasets as
used in high performance computing. It allows specifying
metadata in addition to the purely numerical data, providing
an abstraction layer for specifying the mathematical prop-
erties on top of the lower-level binary layout. It is therefore
desirable to us the functionality of this powerful I/O library
to express the semantics of vector quantities as they arise in
Geometric Algebra. This will be discussed in section 5.

2. VECTOR SPACES
A vector space over a field F (such as R) is a set V together
with two binary operations vector addition + : V × V → V
and scalar multiplication ◦ : F × V → V . The elements
of V are called vectors. A vector space is closed under the
operations + and ◦, i.e., for all elements u, v ∈ V and all el-
ements λ ∈ F there is u+v ∈ V and λ◦u ∈ V (vector space
axioms). The vector space axioms allow computing the dif-



ferences of vectors and therefore defining the derivative of a
vector-valued function v(s) : R→ V as

d

ds
v(s) := lim

ds→0

v(s+ ds)− v(s)

ds
. (1)

2.1 Tangential Vectors
In differential geometry, a tangential vector on a manifold
M is the operator d

ds
that computes the derivative along a

curve q(s) : R → M for an arbitrary scalar-valued function
f : M → R:

d

ds
f

∣∣∣∣
q(s)

:=
df (q(s))

ds
. (2)

Tangential vectors fulfill the vector space axioms and can
therefore be expressed as linear combinations of deriva-
tives along the n coordinate functions xµ : M → R with
µ = 0 . . . n− 1, which define a basis of the tangential space
Tq(s)(M) on the n-dimensional manifold M at each point
q(s) ∈M :

d

ds
f =

n−1∑
µ=1

dxµ (q(s))

ds

∂

∂xµ
f =:

n−1∑
µ=1

q̇µ∂µf (3)

where q̇µ are the components of the tangential vector d
ds

in
the chart {xµ} and {∂µ} are the basis vectors of the tangen-
tial space in this chart. We will use the Einstein sum conven-
tion in the following text, which assumes implicit summation
over indices occurring on the same side of an equation. Of-
ten tangential vectors are used synonymous with the term
“vectors” in computer graphics when a direction vector from
point A to point B is meant. A tangential vector on an
n-dimensional manifold is represented by n numbers in a
chart.

2.2 Co-Vectors
The set of operations df : T (M) → R that map tangential
vectors v ∈ T (M) to a scalar value v(f) for any function
f : M → R defines another vector space which is dual to the
tangential vectors. Its elements are called co-vectors.

< df, v >= df(v) := v(f) = vµ∂µf = vµ
∂f

∂xµ
(4)

Co-vectors fulfill the vector space axioms and can be written
as linear combination of co-vector basis functions dxµ:

df =:
∂f

∂xµ
dxµ (5)

with the dual basis vectors fulfilling the duality relation

< dxν , ∂µ >=

{
µ = ν : 1

µ 6= ν : 0
(6)

The space of co-vectors is called the co-tangential space
T ∗p (M). A co-vector on an n-dimensional manifold is repre-
sented by n numbers in a chart, same as a tangential vector.
However, co-vector transforms inverse to tangential vectors
when changing coordinate systems, as is directly obvious
from eq. (6) in the one-dimensional case: As < dx0, ∂0 >= 1
must be sustained under coordinate transformation, dx0

must shrink by the same amount as ∂0 grows when an-
other coordinate scale is used to represent these vectors.
In higher dimensions this is expressed by an inverse trans-
formation matrix, as demonstrated in Fig. 1. In Euclidean

Figure 1: Vector transformation under shrinking the
height coordinate by a factor of two: tangential vec-
tors (differences between two points) shrink in their
height component by a factor two as well, whereas
surface normal vectors (co-vectors) grow by a fac-
tor two in height, see the vertical components of the
vector and co-vector shown on the right hand side
in the figure.

three-dimensional space, a plane is equivalently described by
a “normal vector”, which is orthogonal to the plane. While
“normal vectors” are frequently symbolized via a vector ar-
row, like tangential vectors, they are not the same, rather
they are dual to tangential vectors. It is more appropri-
ate to visually symbolize them as a plane. This visual is
also supported by (5), which can be interpreted as the to-
tal differential of a function f : a co-vector describes how a
scalar function advances in space, which can be visualized
as surfaces of constant function value (“isosurface”). On an
n-dimensional manifold a co-vector is correspondingly sym-
bolized by an (n− 1)-dimensional subspace.

2.3 Tensors
A tensor Tnm of rank n×m is a multi-linear map of n vectors
and m co-vectors to a scalar

Tnm : T (M)× ...T (M)︸ ︷︷ ︸
n

×T ∗(M)× ...T ∗(M)︸ ︷︷ ︸
m

→ R . (7)

Tensors are elements of a vector space themselves and form
the tensor algebra. They are represented relative to a coor-
dinate system by a set of kn+m numbers for a k-dimensional
manifold. The construction of an tensor of higher rank from
lower rank is called the outer product (or tensor product),
denoted by ⊗:

T ≡ T ab∂a ⊗ ∂b = vaub∂a ⊗ ∂b = va∂a ⊗ ub∂b = v ⊗ u (8)



Tensors of rank 2 may be represented using matrix notation.
Tensors of type T 0

1 are equivalent to co-vectors and called
co-variant, in matrix notation (relative to a chart) they cor-
respond to rows. Tensors of type T 1

0 are equivalent to a tan-
gential vector and are called contra-variant, corresponding
to columns in matrix notation. The duality relationship be-
tween vectors and co-vectors then corresponds to the matrix
multiplication of a 1× n row with a n× 1 column, yielding
a single number

< a, b >=< aµ∂µ, bµdx
µ > ≡ (a0a1 . . . an)


b0

b1

. . .
bn

 . (9)

By virtue of the duality relationship (6) the contraction of
lower and upper indices is defined as the interior product ι
of tensors, which reduces the dimensionality of the tensor:

ι : Tmn × T lk → Tm−kn−l : u, v 7→ ιuv (10)

The interior product can be understood (visually) as a gen-
eralization of some“projection”of a tensor onto another one.

Of special importance are symmetric tensors of rank two
g ∈ T 0

2 with g : T (M) × T (M) → R : u, v 7→ g(u, v) ,
g(u, v) = g(v, u), as they can be used to define a metric or
inner product on the tangential vectors. Its inverse, defined
by operating on the co-vectors, is called the co-metric. A
metric, same as the co-metric, is represented as a symmetric
n× n matrix in a chart for a n-dimensional manifold.

Given a metric tensor, one can define equivalence relation-
ships between tangential vectors and co-vectors, which allow
to map one into each other. These maps are called the “mu-
sical isomorphisms”, [ and ], as they raise or lower an index
in the coordinate representation:

[ : T (M)→ T ∗(M) : vµ∂µ 7→ vµgµνdx
ν (11)

] : T ∗(M)→ T (M) : Vµdx
µ 7→ Vµg

µν∂ν (12)

As an example application, the “gradient” of a scalar func-
tion is given by ∇f = ]df using this notation. In Euclidean
space, the metric is represented by the identity matrix and
the components of vectors are identical to the components
of co-vectors. As computer graphics usually is considered
in Euclidean space, this justifies the usual negligence of dis-
tinction among vectors and co-vectors; consequently graph-
ics software only knows about one type of vectors which is
uniquely identified by its number of components. However,
when dealing with coordinate transformations or curvilinear
mesh types then distinguishing between tangential vectors
and co-vectors is unavoidable. Treating them both as the
same type within a computer program leads to confusions
and is not safe. Section 4 will address this issue.

2.4 Exterior Product
The exterior product ∧ : V × V → Λ(V ) (also known as
wedge product, Grassmann product, or alternating product)
generates vector space elements of higher dimensions from
elements of a vector space V by taking the antisymmetric
part of the outer product (eq. 8) as

u ∧ v =
1

2
(u⊗ v − v ⊗ u) (13)

The new vector space is denoted Λ(V ). With the exterior
product, v ∧ u = −u ∧ v ∀u, v ∈ V , which consequently
results in v ∧ v = 0 ∀ v ∈ V . The exterior product defines
an algebra on its elements, the exterior algebra (or Grass-
man algebra) [9, 5]. It is a sub-algebra of the Tensor algebra
consisting on the anti-symmetric tensors. The exterior al-
gebra is defined intrinsically by the vector space and does
not require a metric. For a given n-dimensional vector space
V , there can at most be n-th power of an exterior product,
consisting of n different basis vectors. The n + 1-th power
must vanish, because at least one basis vector would occur
twice, and there is exactly one basis vector for Λn(V ).

Elements v ∈ Λk(V ) are called k-vectors, whereby 2-vectors
are also called bi-vectors and 3-vectors trivectors. The num-
ber of components of an k-vector of an n-dimensional vector
space is given by the binomial coefficient

(
n
k

)
. For n = 2

there are two 1-vectors and one bi-vector, for n = 3 there are
three 1-vectors, three bi-vectors and one tri-vector. These
relationships are depicted by the Pascal’s triangle, with the
row representing the dimensionality of the underlying base
space and the column the vector type:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

(14)

As can be easily read off, for a four-dimensional vector space
there will be four 1-vectors, six bi-vectors, four tri-vectors
and one 4-vector. The n-vector of a n-dimensional vector
space is also called a pseudo-scalar, the (n − 1) vector a
pseudo-vector.

2.5 Visualizing Exterior Products
An exterior algebra is defined on both the tangential vectors
and co-vectors on a manifold. A bi-vector v formed from
tangential vectors is written in chart as

v = vµν∂µ ∧ ∂ν , (15)

a bi-covector U formed from co-vectors is written in chart
as

U = Uµνdx
µ ∧ dxν . (16)

They both have
(
n
2

)
independent components, due to vµν =

−vνµ and Uµν = −Uνµ (three components in 3D, six compo-
nents in 4D). A bi-tangential vector (15) can be understood
visually as an (oriented, i.e., signed) plane that is spun by
the two defining tangential vectors, independently of the di-
mensionality of the underlying base space. A bi-co-vector
(16) corresponds to the subspace of an n-dimensional hy-
perspace where a plane is “cut out”. In three dimensions
these visualizations overlap: both a bi-tangential vector and
a co-vector correspond to a plane, and both a tangential
vector and a bi-co-vector correspond to one-dimensional di-
rection (“arrow”). In four dimensions, these visuals are
more distinct but still overlap: a co-vector corresponds to a
three-dimensional volume, but a bi-tangential vector is rep-
resented by a plane same as a bi-co-vector, since cutting out
a 2D plane from four-dimensional space yields a 2D plane
again. Only in higher dimensions these symbolic represen-
tations become unique.
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Figure 2: Pascal’s triangle showing the location
of tangential vectors, bi-vectors, co-vectors and bi-
covectors in the various subspaces in different di-
mensions. Especially in three dimensions there are
many overlaps, indicating ambiguities where differ-
ent quantities are all represented by “just three
numbers”. Similar situations occur in 4D, only in
5D all vector types become unambiguous.

However, in any case a co-vector and a pseudo-vector will
have the same appearance as an n − 1 dimensional hyper-
space, same as a tangential vector corresponds to an pseudo-
co-vector:

Vµdx
µ ⇔ vα0α1...αn−1 ∂α0 ∧ ∂α1 ∧ . . . ∂αn−1 (17)

vµ∂µ ⇔ Vα0α1...αn−1 dx
α0 ∧ dxα1 ∧ . . . dxαn−1 (18)

A tangential vector – lhs of (18) – can be understood as
one specific direction, but equivalently as well as “cutting
off” all but one n − 1-dimensional hyperspaces from an n-
dimensional hyperspace – rhs of (18). This equivalence is
expressed via the interior product of a tangential vector v
with an pseudo-co-scalar Ω yielding a pseudo-co-vector V
(19), similarly the interior product of a pseudo-vector with
an pseudo-co-scalar yielding a tangential vector (19):

ιΩ : T (M) → (T ∗)(n−1)(M) : V 7→ ιΩv (19)

ιΩ : T (n−1)(M) → T ∗(M) : V 7→ ιΩv (20)

Pseudo-scalars and pseudo-co-scalars will always be scalar
multiples of the basis vectors ∂α0 ∧ ∂α1 ∧ . . . ∂αn and
dxα0 ∧ dxα1 ∧ . . . dxαn . However, under when inversing a
coordinate xµ → −xµ they flip sign, whereas a “true” scalar
does not. An example known from Euclidean vector algebra
is the allegedly scalar value constructed from the dot and
cross product of three vectors V (u, v, w) = u· (v×w) which
is the negative of when its arguments are flipped:

V (u, v, w) = −V (−u,−v,−w) = −u· (−v ×−w) . (21)

which is actually more obvious when (21) is written as ex-
terior product:

V (u, v, w) = u ∧ v ∧ w = V ∂0 ∧ ∂1 ∧ ∂2 (22)

The result (22) actually describes a multiple of a volume
element span by the basis tangential vectors ∂µ - any vol-
ume must be a scalar multiple of this basis volume element,

but can flip sign if another convention on the basis vec-
tors is used. This convention depends on the choice of a
right-handed versus left-handed coordinate system, and is
expressed by the orientation tensor Ω = ±∂0 ∧ ∂1 ∧ ∂2. In
computer graphics, both left-handed and right-handed co-
ordinate systems occur, which often causes confusion.

By combining (20) and (12) – requiring a metric – we get a
map from pseudo-vectors to vectors and reverse. This map
is known as the Hodge star operator “∗”:

∗ : T (n−1)(M)→ T (M) : V 7−→ ]ιΩV (23)

The same operation can be applied to the co-vectors accord-
ingly, and generalized to all vector elements of the exterior
algebra on a vector space, establishing a correspondence be-
tween k−vectors and n−k-vectors. The Hodge star operator
allows to identify vectors and pseudo-vectors, similarly to
how a metric allows to identify vectors and co-vectors. The
Hodge star operator requires a metric and an orientation Ω.

A prominent application in physics using the hodge star op-
erator are the Maxwell equations, which, when written based
on the four-dimensional potential A = V0dx

0 + Akdx
k (V0

the electrostatic, Ak the magnetic vector potential) take the
form

d ∗ dA = J (24)

with J the electric current and magnetic flow, which is zero
in vacuum. The combination d ∗ d is equivalent to the
Laplace operator “2”, which indicates that (24) describes
electromagnetic waves in vacuum.

2.6 Geometric Algebra
Geometric Algebra is motivated by the intention to find a
closed algebra on a vector space with respect to multiplica-
tion, which includes existence of an inverse operation. There
is no concept of dividing vectors in “standard” vector alge-
bra. Because the result of the inner and exterior product is
of different dimensionality than their operands, they are not
suited to define a closed GA on the vector space.

Geometric algebra postulates a product on elements of a
vector space u, v, w ∈ V that is associative, (uv)w = u(vw),
left-distributive u(v+w) = uv+ uw, right-distributive (u+
v)w = uw+vw, and reduces to the inner product as defined
by the metric v2 = g(v, v). It can be shown that sum of
the exterior product (which, within Geometric Algebra, is
also called outer product, but should not be confused with
the outer product ⊗ on tensors from eq. 8) and the inner
product fulfill these requirements; this defines the geometric
product as the sum of both:

uv := u ∧ v + u · v . (25)

Since u ∧ v and u · v are of different dimensionality (
(
n
2

)
and

(
n
0

)
, respectively), the result must be in a higher dimen-

sional vector space of dimensionality
(
n
2

)
+
(
n
0

)
. This space is

formed by the linear combination of k-vectors, its elements
are called multivectors. Its dimensionality is

∑n−1
k=0

(
n
k

)
≡ 2n.

For instance, in two dimensions the dimension of the space
of multivectors is 22 = 4. A multivector V , constructed from
tangential-vectors on a two-dimensional manifold, is written



Figure 3: Graphical representation of the 1+3+3+1
structure of components that build a 3D multivec-
tor: three tangential vectors, three oriented planes,
one scalar and one (oriented) volume element.

as

V = V 0 + V 1∂0 + V 2∂1 + V 3∂0 ∧ ∂1 (26)

with V µ the four components of the multivector in a chart.
For a three-dimensional manifold a multivector on its tan-
gential space has 23 = 8 components and is written as

V =V 0+

V 1∂0 + V 2∂1 + V 2∂2+

V 4∂0 ∧ ∂1 + V 5∂1 ∧ ∂2 + V 6∂2 ∧ ∂0+

V 7∂0 ∧ ∂1 ∧ ∂2

(27)

with V µ the eight components of the multivector in a chart.
The components of a multivector have a direct visual in-
terpretation, which is one of the key features of geometric
algebra. In 3D, a multivector is the sum of a scalar value,
three directions, three planes and one volume. These basis
elements span the entire space of multivectors.

2.7 Spinors and Quaternions
Given a bi-vector U = u∧v built from two orthonormal unit
vectors u, v (which fulfill |u| = 1, |v| = 1, u · v = 0 under a
given metric such that U = uv), we find that it provides the
same algebraic properties as the imaginary unit

√
−1:

U2 = UU = (uv)(uv) = (uv)(−vu) = −u(vv)u = −1 (28)

This is a well known aspect of Geometric Algebra, which
leads to n distinct imaginary units on an n-dimensional vec-
tor space. For n = 3 we have three imaginary units (usu-
ally denoted as i, j, k), which relate to the three bi-vectors
along the three coordinate axis. These three basis vectors
i = ∂x∧∂y, j = ∂y ∧∂z, k = ∂z ∧∂x (equivalently to the co-
vectors) fulfill ijk = −1, which is identical to the definitions
used in Quaternion algebra [7]. A quaternion consists of four
components, a scalar and “vectorial” part. They represent

the even parts of a multivector in 3D (27):

Q = Q0 +Q2∂0 ∧ ∂1 +Q0∂1 ∧ ∂2 +Q1∂2 ∧ ∂0 (29)

It can be shown that the even multivectors form a closed sub-
algebra itself. GA provides a direct geometric insight for
quaternions via (29), with the hard-to-memorable quater-
nion product being immersed within the easily remember-
able geometric product. Given an even multivector (29), its
dual as provided by the Hodge star operator (23) yields an
odd multivector, consisting out of a tangential vector and a
pseudo-scalar (i.e., a volume element).

Quaternions are known in computer graphics for implement-
ing rotations (for instance, the SbRotation class in OpenIn-
ventor), alternatively to rotation matrices (such as used in
OpenGL). Same functionality is provided by rotors in GA.
In 2D the right-multiplication of a vector v = vx∂x + vy∂y
with the bi-vector ∂x ∧ ∂y = ∂x∂y corresponds to a counter-
clockwise rotation:

v(∂x ∧ ∂y) = vx∂x(∂x∂y) + vy∂y(∂x∂y) = vx∂y − vy∂x (30)

Therefore a rotation around an arbitrary angle ϕ is written
as a linear combination of a scalar component and a bi-
vector, which is called a rotor (or spinor):

R = cosϕ+ i sinϕ =: ei (31)

where i is an arbitrary unit bi-vector fulfilling i2 = −1.
e is the Euler number used here for defining the exponen-
tial function of a bi-vector, in style of the Euler equation.
The inverse rotor (implementing clockwise rotation on right-
multiplication, or counter-clockwise when applied from the
left) is given by inversing the rotation angle

R−1 = e−i = cosϕ− i sinϕ . (32)

In two dimensions it is equivalent if some vector v is left-
multiplied or right-multiplied with a rotor

vR−2 ≡ R2v ≡ RvR−1 , (33)

however in more than two dimensions the symmetric variant
RvR−1 with multiplying from the left and from the right
has to be used to cancel out a tri-vector component that
would otherwise occur (from multiplying the vector with a
the bi-vector part of the rotor). While Quaternion Algebra
is specific to three dimensions, the concept of a rotor in GA
is independent from the dimensions and directly applicable
to the 4D case, as will be reviewed in the next section.

2.8 Multilinear Multivector Maps
Same as a tensor is a multilinear map of vectors and co-
vectors, we may represent multilinear maps of multivectors
as a set of numbers given a specific chart. The Riemann
tensor R, as described in 3.3, is such a case, is it can be seen
as a map from bivectors to bivectors:

R : Tp(M) ∧ Tp(M)→ Tp(M) ∧ Tp(M) (34)

The Riemann tensor can then be interpreted as argument of
the Lorentz boost eR(U) resulting from a tiny circuit within
a plane defined by the bivector U .

3. NEWMAN-PENROSE FORMALISM
General relativity predicts the existence of gravitational
waves. There is a huge effort to detect gravitational waves



Figure 4: The two linear polarizations of gravita-
tional waves. The + polarization (top) has a cos 2χ
shape about the direction of propagation (into the
paper), while the × polarization (bottom) has a
sin 2χ shape. A gravitational wave causes a system
of freely falling test masses to oscillate relative to a
grid of points a fixed proper distance apart.

expected for example from merging pairs of black holes [1].
To date no gravitational waves have been detected directly.
There is however indirect evidence for their existence from
the gradual decrease in orbital period of the binary pulsar,
which is quantitatively consistent with the general relativis-
tic prediction of energy loss by quadrupole emission of grav-
itational waves [4, 6].

It is conventional to characterize gravitational waves in
terms of their Newman-Penrose (1962) (NP) components
[14, 2, 16]. The purpose of this section is to give an idea
of how this works, and how the geometric algebra offers in-
sight into the NP formalism. The traditional derivation of
the NP components of gravitational waves is magical, and
shrouded in unnecessary and misleading notation. As Held
(1974) [13] politely puts it, the NP formalism presents “a
formidable notational barrier to the uninitiate”.

The notion of a gravitational wave can be perplexing. A
passing gravitational wave causes the distance between two
freeling-falling masses to oscillate. But if gravity affects the
very measurement of length itself, how can the distance be-
tween the masses be measured? The answer is that, despite
the fact that in general relativity spacetime has no absolute
existence, in the sense that the choice of coordinate system

is arbitrary, nevertheless the metric asserts that there is a
unique proper distance along a given path (or affine distance,
along a null path) between any two points in spacetime (such
as the path followed by a beam of laser light). The presence
of gravity, or curvature, is expressed by the presence of a
gravitational force between two points a fixed proper dis-
tance apart. A gravitational wave causes an oscillation in
the differential gravitational force, or tidal force, between
two points a fixed distance apart.

Figure 4 illustrates gravitational waves, in their two possi-
ble linear polarizations, + and ×. The grid represents a lo-
cally inertial system of points a fixed proper distance apart.
The superposed ellipses represent a system of freely-falling
test masses whose positions, initially on a circle, are be-
ing perturbed by a gravitational wave moving in a direction
perpendicular to the paper. The proper distance between
freely-falling test masses oscillates. That oscillation can be
measured for example by the change in the number of wave-
lengths along a laser beam between the masses.

Sometimes one sees depictions of gravitational waves simi-
lar to Figure 4, but with the grid oscillating along with the
ellipses. Such depictions are intended to convey the idea
that gravitational waves are waves of spacetime (of the met-
ric), but they are misleading, since they suggest that rulers
oscillate along with the test masses, which is false.

3.1 Newman-Penrose tetrad
The Newman-Penrose (NP) formalism is particularly well
adapted to treating waves that travel at the speed of light,
which includes electromagnetic and gravitational waves.
The NP formalism starts with the rest frame of an observer,
and applies two tricks to it. The axes, or tetrad, of the ob-
server’s locally inertial frame form an orthonormal basis of
vectors in the geometric algebra

{γt,γx,γy,γz} , (35)

with the metric in Minkowski signature of the form

γm · γn =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (36)

with indices m, n running over t, x, y, z. The NP formalism
chooses one axis, typically the z-axis, to be the direction of
propagation of the wave.

The first NP trick is to replace the transverse axes γx and
γy by spinor axes γ+ and γ− defined by

γ+ ≡
1√
2

(γx + Iγy) , γ− ≡
1√
2

(γx − Iγy) . (37)

This is the same trick used to define the spinor components
L± of the angular momentum operator L in quantum me-
chanics.

The second NP trick is to replace the time t and propaga-
tion z axes with outgoing and ingoing null axes γv and γu,
defined by

γv ≡
1√
2

(γt + γz) , γu ≡
1√
2

(γt − γz) . (38)



The resulting outgoing, ingoing, and spinor axes form a NP
null tetrad

{γv,γu,γ+,γ−} , (39)

with NP metric

γm · γn =


0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0

 (40)

with indices m, n running over v, u,+,−. The NP met-
ric (40) has zeros down the diagonal. This means that each
of the four NP axes γm is null: the scalar product of each
axis with itself is zero. In a profound sense, the null, or light-
like, character of each the four NP axes explains why the NP
formalism is well adapted to treating fields that propagate
at the speed of light.

Three kinds of transformation, considered further below,
take a particularly simple form in the NP tetrad:

I Reflections through the transverse axis y;
II Rotations about the propagation axis z;

III Boosts along the propagation axis z.

3.1.1 Reflections
Under transformation I, a reflection through the y-axis, the
spinor axes swap:

γ+ ↔ γ− , (41)

which may also be accomplished by complex conjugation.
Reflection through the y-axis, or equivalently complex con-
jugation, changes the sign of all spinor indices of a tensor
component

+↔ − . (42)

In short, complex conjugation flips spin, a pretty feature of
the NP formalism.

3.1.2 Rotations
Under transformation II, a right-handed rotation by angle
χ about the direction z of propagation, the transverse axes
γx and γy transform as

γx → cosχ γx − sinχ γy ,

γy → sinχ γx + cosχ γy . (43)

It follows that the spinor axes γ+ and γ− transform under
a right-handed rotation by angle χ as

γ± → e±Iχ γ± . (44)

The transformation (44) identifies the spinor axes γ+ and
γ− as having spin +1 and −1 respectively. More generally,
an object can be defined as having spin s if it varies by

esIχ (45)

under a rotation by angle χ about the direction of propaga-
tion. The NP components of a tensor inherit spin properties
from that of the spinor basis. The general rule is that the
spin s of any tensor component is equal to the number of +
covariant indices minus the number of − covariant indices:

spin s = number of + minus − covariant indices . (46)

3.1.3 Boosts
The final transformation III, a boost along the z-axis, multi-
plies the outgoing and ingoing axes γv and γu by a blueshift
factor ε and its reciprocal

γv → εγv ,

γu → (1/ε)γu . (47)

If the observer boosts by velocity v in the z-direction away
from the source, then the blueshift factor is the special rel-
ativistic Doppler shift factor

ε =

(
1− v
1 + v

)1/2

. (48)

The exponent n of the power εn by which an object changes
under a boost along the z-axis is called its boost weight.
Thus γv has boost weight +1, and γu has boost weight −1.
The NP components of a tensor inherit their boost weight
properties from those of the NP basis. The general rule is
that the boost weight n of any tensor component is equal
to the number of v covariant indices minus the number of u
covariant indices:

boost weight n = number of v minus u covariant indices .
(49)

3.2 Electromagnetic waves
The properties of gravitational waves are in many ways sim-
ilar to those of electromagnetic waves. Both kinds of waves
are massless, traveling at the speed of light. A crucial dif-
ference is that gravitational waves are spin-2 (tensor) waves,
whereas electromagnetic waves are spin-1 (vector) waves.

Recall the nature of electromagnetic waves. Electromag-
netic waves are characterized by the electromagnetic field
Fij , which is an antisymmetric tensor, or bivector, with 6
distinct components. The 6 components are commonly col-
lected into two 3-dimensional vectors, the electric and mag-
netic fields E and B. The geometric algebra gives the insight
that the electromagnetic field tensor, being a bivector, has
a natural complex structure, in which the electric and mag-
netic fields together form a complex 3-vector E + IB.

With respect to a NP null tetrad (39), the electromagnetic
bivector has 3 complex components, of spin respectively −1,
0, and +1, in accordance with the rule (46):

− 1 : Fu−

0 :
1

2
(Fuv + F+−)

+1 : Fv+ . (50)

The complex conjugates of the 3 components are:

− 1∗ : Fu+

0∗ :
1

2
(Fuv − F+−)

+1∗ : Fv− , (51)

whose spins have the opposite sign. Conventionally (Chan-
drasekhar 1983), the 3 complex spin components of the elec-



tromagnetic field bivector in the NP formalism are denoted

− 1 : φ2 ,

0 : φ1 ,

+1 : φ0 . (52)

The notation, like much of the rest of conventional NP no-
tation, is truly awful.

For outgoing electromagnetic waves, only the spin −1
component propagates, carrying electromagnetic energy far
away from a source:

− 1 : propagating, outgoing . (53)

This propagating, outgoing −1 component has spin −1, but
its complex conjugate has spin +1, so effectively both spin
components, or helicities, of an outgoing wave are embodied
in the single complex component. The remaining 2 complex
NP components (spins 0 and 1) of an outgoing wave are
short range, describing the electromagnetic field near the
source.

Similarly, for ingoing waves, only the spin +1 component
propagates.

The isolation of each propagating mode into a single com-
plex NP mode, incorporating both helicities, is simpler than
the standard picture of oscillating orthogonal electric and
magnetic fields.

3.3 Gravitational waves
In electromagnetism, the electromagnetic field tensor is de-
fined by the commutator of the gauge-covariant derivative.
In general relativity, the analogous commutator of the co-
variant derivative is the Riemann curvature tensor Rklmn.
The Riemann curvature tensor has symmetries which can be
designated shorthandly

R([kl][mn]) . (54)

Here [] denotes antisymmetry, and () symmetry. The desig-
nation (54) thus signifies that the Riemann curvature tensor
Rklmn is antisymmetric in its first two indices kl, antisym-
metric in its last two indices mn, and symmetric under ex-
change of the first and last pairs of indices, kl ↔ mn. In
addition to the symmetries (54), the Riemann curvature ten-
sor has the totally antisymmetric symmetry

Rklmn +Rkmnl +Rknlm = 0 . (55)

The symmetries (54) imply that that the Riemann curva-
ture tensor is a symmetric matrix of antisymmetric tensors,
which is to say, a 6 × 6 symmetric matrix of bivectors. A
6×6 symmetric matrix has 21 independent components. The
additional condition (55) eliminates one degree of freedom,
leaving the Riemann curvature tensor with 20 independent
components.

In spacetime algebra any bivector U (6 component) can be
written as complex sum U = (E + IB)γt of two spatial 3-
vectors E = Exγx +Eyγy +Bzγz and B = Bxγx +Byγy +
Bzγz, due to the identity Iγxγt ≡ γyγz etc. In analogy to
electromagnetism, Eγt is called the electric bivector, Bγt
the magnetic bivector. The Riemann tensor, a multilinear

multimap on bivectors eq. (34), can then be organized into
a 2× 2 matrix of 3× 3 blocks with bivector indices, yielding
the structure (

REE REB
RBE RBB

)
. (56)

The condition of being symmetric implies that REE and
RBB are symmetric, while RBE = (REB)>. The condi-
tion (55) states that the 3×3 block REB (and likewise RBE)
is traceless.

The natural complex structure of bivectors in the geomet-
ric algebra suggests recasting the 6 × 6 Riemann curvature
matrix (56) into a 3× 3 complex matrix, which would have
the structure (RE + IRB)(RE + IRB), or equivalently

REE −RBB + I(REB +RBE) , (57)

which is a complex linear combination of the four 3×3 blocks
of the Riemann matrix (56). However, it turns out that the
complex symmetric 3×3 matrix (57) encodes only part of the
Riemann curvature tensor, namely the Weyl tensor. More
specifically, the Riemann curvature tensor decomposes into
a trace part, the Ricci tensor Rkm, and a totally traceless
part, the Weyl tensor Cklmn. The Ricci tensor, which is sym-
metric, has 10 independent components. The Weyl tensor,
which inherits the symmetries (54) and (55) of the Rieman
tensor, and in addition vanishes on contraction of any pair
of indices, also has 10 independent components. Together,
the Ricci and Weyl tensors account for the 20 components
of the Riemann tensor. The components of the Ricci and
Weyl tensors, though algebraically independent, are related
by the differential Bianchi identities.

The end result is that the Weyl tensor, the traceless part
of the Riemann curvature tensor, can be written as a 3× 3
complex traceless symmetric matrix (57). Such a matrix has
5 distinct complex components.

In empty space (vanishing energy-momentum tensor), the
Ricci tensor vanishes identically. Thus the properties of the
gravitational field in empty space are specified entirely by
the Weyl tensor. In particular, gravitational waves are spec-
ified entirely by the Weyl tensor.

When the 5 complex components of the Weyl tensor are
expressed in a NP null tetrad (39), the result is 5 complex
components, of spins respectively −2, −1, 0, +1, and +2:

− 2 : Cu−u−

−1 : Cuvu−

0 :
1

2
(Cvuvu + Cvu−+)

+1 : Cvuv+ (58)

+2 : Cv+v+ . (59)

It can be shown that these 5 complex components exhaust
the degrees of freedom of the Weyl tensor.

For outgoing gravitational waves, only the spin −2 com-
ponent propagates, carrying gravitational waves to far dis-
tances:

− 2 : propagating, outgoing . (60)



Figure 5: Volume rendering of the gravitational ra-
diation during a binary black hole merger, repre-
sented by the real part of Weyl scalar r · ψ4.

This propagating, outgoing −2 component has spin −2, but
its complex conjugate has spin +2, so effectively both spin
components, or helicities, or polarizations, of an outgoing
wave gravitational wave are embodied in the single com-
plex component. The remaining 4 complex NP components
(spins −1 to 2) of an outgoing gravitational waves are short
range, describing the gravitational field near the source.

Conventionally (Chandrasekhar 1983), the 5 complex spin
components of the Weyl tensor in the NP formalism are
impenetrably denoted

− 2 : ψ4 ,

−1 : ψ3 ,

0 : ψ2 ,

+1 : ψ1

+2 : ψ0 . (61)

Thus the component ψ4 represents propagating, outgoing
gravitational waves. The real part of ψ4 represents the
cos(2χ), or +, polarization of the propagating gravita-
tional wave, while (minus) its imaginary part represents the
sin(2χ), or ×, polarization, Figure 4. Next time you see
an illustration of gravitational waves where the caption says
that ψ4 is plotted, that’s what it is (see figure 5). We con-
sider the formulation of the NP scalars as presented here
much easier to understand than the usual approach, such as
e.g. [16].

4. IMPLEMENTING VECTORS IN C++
As demonstrated in section 2, denoting a vector by just
its dimensionality n is insufficient to completely identify
its algebraic properties including coordinate transformation
rules. Additional information is needed, such as the number
of covariant and contra-variance indices.

4.1 Class Hierarchy
Let us denote an array of fixed size N over some type T as
FixedArray<T,N>, using C++ template notation. No alge-
braic operation shall be defined on this type, it just serves
as a container for numbers, forming an N -tupel of T ’s. This
definition serves as a base class for a type Vector<T,N>,
which does not add new data members but only adds oper-
ators for addition of Vector<T,N>’s and multiplication with

scalar values, yielding objects of type Vector<T,N> again.

FixedArray<T,N>→ Vector<T,N> (62)

The resulting class Vector<T,N> is a vector in the algebraic
sense. It is convenient to make use of matrix algebra in many
cases, and since matrices have vector space properties, to
express such by deriving the Matrix class from the general
Vector class:

Vector<T,N*M>→ Matrix<T,N,M> (63)

The matrix class will add the concept of a matrix prod-
uct to the general vector space elements. A convenient,
though not required, intermediate definition is to define rows
and columns – they are rather type definitions than derived
classes:

Matrix<T,1,M> → Row<T,M> (64)

Matrix<T,N,1> → Column<T,N> (65)

These definitions of provide a the basis of vector types to be
used on the tangential space of a manifold. For a given N ,T
the following classes are derived:

FixedArray<T,N> → point (66)

Row<T,N> → covector (67)

Column<T,N> → tvector (68)

Vector < T, N2 − N(N + 1)/2 > → bivector (69)

Vector < T, 1 + N
2 − N(N + 1)/2 > → rotor (70)

Vector < T, 2N > → mulvector(71)

The definition of (67) and (68) directly implements the du-
ality relationship (6) in a type-safe way. Tangential vectors
and co-vectors both have vector space properties by virtue
of (63), but are different types, yet with the property that
their product (inherited from the matrix product) yields a
scalar. A point (66) by itself has no algebraic properties,
it only provides coordinates. However, the difference be-
tween two points is to be defined to yield a tangential vector
(68). On tvectors and covectors usual matrix operations
are inherently defined, so existing algorithms – that are usu-
ally provided using matrix algebra – can still be applied to
them. However, objects that directly implement operations
from Geometric Algebra such as bivector, rotor and mul-

tivector are safe from being used as parameters to matrix
algebra, yet they inherit vector space properties. We can
not show the actual implementation of the operations here
due to space limitations; it is sufficient to emphasize that,
by using C++ operator overloading, the API can be made
very close to the mathematical notation. In addition it is
convenient to overload the function call operator “()” for
rotor objects to denote them to be applied to a vector ob-
ject, meaning “R(v)” := RvR−1. This operator will be used
in the following code excerpts.

4.2 Camera Navigation using GA
A“camera” in the Vish [8] visualization framework is defined
through an observer’s location P , a point that is looked at L,
and an horizontal view plane, which is given as a bi-vector
U corresponding to the “upwards” direction. The difference
t = L− P gives the view direction, a tangential vector.

One algorithm for camera navigation is to rotate the camera
by an angle ϕ horizontally around the point of interest L



and by an angle ϑ “upwards” along the line of sight. This
algorithm is easily expressed in terms of geometric algebra.
First we define the view plane V as

V := t ∧ ∗U (72)

and then construct two rotors, a horizontal one and a vertical
one

RH := eU/|U| ϕ (73)

RV := e V/|V | ϑ (74)

Now the camera motion is achieved by computing the new
observer location by adding the rotated view direction to
the point of interest:

Pnew = L+ (RHRV ) (t) (75)

Finally, the horizontal view plane needs to be adjusted as
well by the vertical rotation

Unew = RV U (76)

This algorithm can directly be implemented in six C++
source code statements:

void Rotate(Camera&TheCamera,
double phi, double theta)

{
tvector t = TheCamera.Observer - TheCamera.LookAt;

bivector VerticalPlane = (t ^ *TheCamera.Up).unit();

rotor HorizontalRotation = exp(TheCamera.Up , phi),
VerticalRotation = exp(VerticalPlane, theta);

TheCamera.Up *= VerticalRotation;

TheCamera.Observer = TheCamera.LookAt +
(VerticalRotation*HorizontalRotation)( t );

}

Another algorithm will rotate the camera around the view
direction. This is trivial to implement, since we just need
the rotor Rt that corresponds to the view direction, which is
given by the exponential of from the dual of the sight vector
(a bi-vector),

Rt = eϕ∗(P−L)/|P−L| , (77)

and apply this to the camera’s Up-bivector to rotate it. The
corresponding C++ source code is accordingly simple:

double RotateAroundViewdir(Camera&theCamera, double phi)
{
tvector t = (Camera.Observer - Camera.LookAt).unit();
rotor ViewRotor = exp(*t, phi);

Camera.Up = ViewRotor( Camera.Up );
}

This formulation is considered to be much simpler than an
equivalent formulation using matrices and objects like “axial
vectors”. Using the operations and involved objects is very
intuitive once their meaning in the Geometric Algebra has
become clear.

4.3 Relativistic observers in the BHFS
4.3.1 The BHFS

The Black Hole Flight Simulator (BHFS) is general rela-
tivistic software that can be used to visualize black holes.
The BHFS remains work in progress, but has already been
used in a number of productions, including the large-format
high-resolution dome show “Black Holes: The Other Side
of Infinity” (2006, Denver Museum of Nature and Science),
and the TV documentaries “Monster of the Milky Way”
(2006, NOVA-PBS), and“Monster Black Hole”(2008, Naked
Science series, National Geographic). Figure 6 illustrates
three frames from a sequence rendered for the National Ge-
ographic documentary.

The BHFS provides a complete implementation of the
Reissner-Nordström geometry of a charged black hole, in-
cluding its analytic connections inside the horizon to worm-
holes, white holes, and other universes. Real astronomical
black holes probably have little charge, but they probably
do rotate rapidly. A charged black hole is often taken as a
surrogate for a rotating black hole, since the interior struc-
ture of a spherical charged black hole resembles that of a
rotating black hole, but is much easier to model.

The Reissner-Nordström geometry, like its rotating coun-
terpart the Kerr-Newman geometry, is subject to the rel-
ativistic counter-streaming instability at the inner horizon
first pointed out by Poisson & Israel (1990) [15], and called
by them “mass inflation” (see Hamilton & Avelino 2009 [12]
for a review). The inflationary instability is expected to
eliminate the wormhole and white hole connections inside
realistic (astronomical) black holes.

4.3.2 Lorentz rotors in the BHFS
In addition to volume-rendering, the BHFS implements
quasi-rigid objects, called “Ships”, which by default move
along geodesics in the black hole geometry. The camera
(observer) is attached to one of the Ships. The orientation
and motion of the camera are defined by a Lorentz transfor-
mation (which includes both a spatial rotation and a Lorentz
boost), or equivalently, by a Lorentz rotor.

A Lorentz rotor R is a unimodular member of the even el-
ements of the spacetime algebra. A Lorentz rotor can be
written

R = eθ (78)

where θ is a bivector in the spacetime algebra. The corre-
sponding inverse Lorentz rotor is the reverse R̄

R̄ = e−θ . (79)

The condition of being unimodular means R̄R = 1.

The even spacetime algebra is isomorphic to the algebra of
complex quaternions, also called biquaternions. A complex
quaternion can be written

q = qR + IqI (80)

where qR and qI are two real quaternions comprising the
real and imaginary parts of the complex quaternion q

qR = ixR+jyR+kzR+wR , qI = ixI+jyI+kzI+wI . (81)



Figure 6: Three frames from a 3000-frame general relativistic volume-rendering with the BHFS of a general
relativistic magnetohydrodynamic supercomputer simulation of a disk and jet around a black hole (John
Hawley, 2007, private communication). The three frames show, from left to right, (a) outside the black
hole, (b) passing through the black hole’s outer horizon, (c) hitting the black hole’s inner horizon, where
the infinite blueshift and energy density triggers the mass inflation instability (Poisson & Israel 1990). The
background texture was created from a 3D model of the Milky Way by Donna Cox’s team at NCSA. The
sequence was prepared for “Monster Black Hole”, an episode of National Geographic’s Naked Science series.

The imaginary I is the pseudoscalar of the spacetime alge-
bra. It commutes with the quaternionic imaginaries i, j, k.
The quaternionic imaginaries themselves satisfy

i2 = j2 = k2 = −1 , ijk = 1 , (82)

from which it follows that the quaternionic imaginaries an-
ticommute between each other, for example ij = −k = ji.
The convention ijk = 1, equation (82), agrees with the
convention for quaternions in OpenGL, but is opposite
to William Rowan Hamilton’s carved-in-stone convention
ijk = −1. In OpenGL, rotations accumulate to the right: a
rotation R = R1R2 means rotation R1 followed by rotation
R2.

The BHFS stores a complex quaternion q as an 8-component
object

q =

(
xR yR zR wR
xI yI zI wI

)
. (83)

The reverse q̄ of the complex quaternion q is its quaternionic
conjugate

q̄ =

(
−xR −yR −zR wR
−xI −yI −zI wI

)
. (84)

The group of Lorentz transformations, or Lorentz rotors,
corresponds to complex quaternions of unit modulus. The
unimodular condition R̄R = 1, a complex condition, re-
moves 2 degrees of freedom from the 8 degrees of freedom
of complex quaternions, leaving the Lorentz group with 6
degrees of freedom, which is as it should be.

Spatial rotations correspond to real unimodular quater-
nions, and account for 3 of the 6 degrees of freedom of
Lorentz transformations. A spatial rotation by angle θ right-
handedly about the x-axis is the real Lorentz rotor

R = cos(θ/2) + i sin(θ/2) , (85)

or, stored as a complex quaternion,

R =

(
sin(θ/2) 0 0 cos(θ/2)

0 0 0 0

)
. (86)

Lorentz boosts account for the remaining 3 of the 6 degrees
of freedom of Lorentz transformations. A Lorentz boost by
velocity v, or equivalently by boost angle θ = atanh(v),
along the x-axis is the complex Lorentz rotor

R = cosh(θ/2) + Ii sinh(θ/2) , (87)

or, stored as a complex quaternion,

R =

(
0 0 0 cosh(θ/2)

sinh(θ/2) 0 0 0

)
. (88)

4.3.3 Simplicity of Lorentz rotors
The advantages of quaternions for implementing spatial ro-
tations are well-known to 3D game programmers. Compared
to standard rotation matrices, quaternions offer increased
speed and require less storage, and their algebraic proper-
ties simplify interpolation and splining.

Complex quaternions retain similar advantages for imple-
menting Lorentz transformations. They are fast, compact,
and straightforward to interpolate or spline.

Under a spacetime rotation by Lorentz rotor R, a general
multivector a in the spacetime algebra transforms as

a→ R̄aR . (89)

A general such multivector in the spacetime algebra is a
16-component object, with 8 even components, and 8 odd
components.

As remarked earlier, the 8-component even spacetime subal-
gebra is isormorphic to the algebra of complex quaternions.
As an example, the electromagnetic field constitutes a 6-
component bivector, an even element of the spacetime al-
gebra. The electric and magnetic fields E and B can be



encoded as the complex quaternion

F =

(
Ex Ey Ez 0
Bx By Bz 0

)
. (90)

The transformation (89) then becomes

F → R̄FR , (91)

which is a powerful and elegant way to Lorentz transform
the electromagnetic field. The electromagnetic field F in the
transformation (91) is the complex quaternion (90), and the
rotor R is another complex quaternion, so the Lorentz trans-
formation (91) amounts to multiplying 3 complex quater-
nions, a one-line expression in a c++ program.

The most common need in the BHFS is to Lorentz transform
odd multivectors, not even multivectors. For example, every
point on a scene that an observer sees is represented by
the energy-momentum 4-vector of a photon emitted by the
point and observed by the observer. Each such 4-vector
a = amγm is an odd multivector in the spacetime algebra.
A general odd multivector is a sum of a vector part a and a
pseudovector part Ib. The odd multivector can be written
as a product of γt (the time basis element of the spacetime
algebra) and an even multivector q

a+ Ib = γtq (92)

where q is the even multivector, or complex quaternion,

q =

(
−bx −by −bz at

ax ay az bt

)
. (93)

The Lorentz transformation (89) implies γtq → R̄γtqR =
γtR̄

∗qR, where ∗ denotes complex conjugation with respect
to the peudoscalar imaginary I. It follows that the complex
quaternion q, equation (93), transforms as

q → R̄∗qR . (94)

The transformation (94) of the complex quaternion (93) pro-
vides a simple and elegant way to Lorentz transform a 4-
vector am and 4-pseudovector Ibm. Since bm (without the
I factor) is just another 4-vector, the transformation (94)
effectively transforms two 4-vectors, am and bm, simultane-
ously. The transformation (94) amounts to multiplying 3
complex quaternions, a one-line expression in a c++ pro-
gram.

5. VECTORS ON THE HARD DISK
5.1 Meta-Data on Vector Types
Storing a specific vector on hard disk, entails storing its nu-
merical representation in a chosen coordinate system. How-
ever, when reading an unkown object from disk, solely the
information on its numerical representation is insufficient to
know what kind of vector it might be. We need some meta-
data, additional information about the data itself, that tells
what properties the object on disk has.

Within a C++ program, this meta-information is available
via the typeid function of a type. For instance, it allows to
distinguish between a FixedArray<3,double> and a Vec-

tor<3,double>, because typeid(FixedArray<3,double>)

!= Vector<3,double>, even though the memory layout of
both types is exactly the same. However, the function value
of typeid cannot be stored to disk – it is a compiler-internal

property that makes only sense at runtime for this specific
compiler.

We therefore need to assign certain properties to a type that
are associated with its algebraic properties. These proper-
ties must not be stored with the vector type itself for per-
formance reasons. They could be stored within a class as
enums, typedefs or static member functions, thereby not re-
quiring memory for the actual numerical type. An alterna-
tive technique is to associate information to a type via C++
type trait templates. This technique, common in C++ tem-
plate meta-programming [19], allows to specify information
about a type independently from this type, thereby achiev-
ing some encapsulation between the original type and the
meta-information about it. Type traits are templates that
are specialized for known types and provide information on
these types without the need to modify the type itself. They
can be applied to native types as well as user-defined types,
and including to types that are defined externally, for ex-
ample by a library. They can be added independently to an
existing type. An example of a type trait definition is given
in the following code excerpt:

template <class Type> struct MetaInfo;

template <>
struct MetaInfo<double>
{ enum { SIZE = 1 } };

template <int N>
struct MetaInfo<FixedArray<N, double> >
{ enum { SIZE = N } };

The type trait MetaInfo associates an integer value SIZE

with an arbitrary type Type. This information is available
at compile-time, and can be reduced to an usual integer in
a template class at any time, such as in:

template <class Type>
int NumberOfElements(const Type&T)
{

return MetaInfo<T>::SIZE;
}

Note that a type trait class may also specify default values
(by specifying a non-specialized definition) and can be func-
tions on template types itself (as demonstrated in the sec-
ond specialization). This mechanism allows to equip exist-
ing types, e.g. as provided by external libraries, with meta-
information as required for our framework.

The objective is to specify complete meta-information about
a “vector space element” as required to uniquely identify it.
As introduced in section 2, such information includes a refer-
ence to the metric (or metric field) and the orientation form
ι, to know perform the correct algebraic operations. This in-
formation can be provided via a “coordinate system”, which
can be a global type definition – not more than providing
the implicit knowledge on how to perform these operations,
such as in Euclidean space. In such a case, no memory or
computational resources are implied, but another type def-
inition could require explicit formulae for expressions that



are implicit in Euclidean space. Such a chart object may be
expressed via a convention on how the coordinate functions
are named, for instance {x, y, z} for Cartesian coordinates
versus {r, ϑ, ϕ} for polar coordinates. While this is yet work
in progress, the following quantities have been found to be
required for at least basic distinction and identification of
vector types:

I multiplicity : an integer value expressing the number of
components of this type.

II rank : the power k = a+ b of the vector space in terms
of the tangential space T a(M)× (T ∗)b(M); it is the di-
mensionality of the index space when considering the
vector type as an array: zero indicates a scalar type,
one is a one-dimensional vectorial type (tangential vec-
tor, co-vector, pseudo-vector, pseudo-covector), two are
objects representable as matrix, etc.

III grade: for quantities from geometric algebra, specifies
the grade k of the k-vector; the default is zero, for in-
stance for symmetric tensor fields. For example, a bi-
vector in 3D will have a grade of 2 whereas its rank is
1.

IV dimensions: the dimensionality n of the n-dimensional
manifold on which this vector type is attached.

V coordinatename(i): textual functions specifying the
naming convention for each of the n coordinate func-
tions.

VI covariance(i): for each index, a flag specifying whether
the index is an upper index or lower index. It can be
implemented via some function that returns true or false
for each index; this function may be evaluated fully at
compile-time (a template function that is known) or via
lookup into some static array.

VII symmetries(n): often, tensors have symmetric or anti-
symmetric index pairs. For efficiency reasons it is then
important to calculate and store only a minimum subset
of the components. This can be implemented via two
lookup tables: one table lists those components which
are actually stored, the other table contains the pre-
scription for obtaining each tensor component. In a
simple scheme, each tensor component is either stored,
or is the negative of a stored component, or is zero. (See
tables 1 and 2 for examples.) More complex schemes
also allow cyclic symmetries, where tensor components
can be linear combinations of stored components.

VIII coordinate systems(i): tensor components are only de-
fined with respect to a particular coordinate system. It
is necessary to store (for each index) the name of the
associated coordinate system. There are objects, such
as basis systems or operators that transform between
different coordinate systems, where different tensor in-
dices correspond to different coordinate systems.

These properties have been chosen such that some opera-
tions on the given types can also succeed with partial knowl-
edge, since certain algorithms do not require full knowledge
of the entire algebraic operations of all types.

List of stored components mapping the component name to
each storage index:

[0] [1] [2] [3] [4] [5]
gxx gxy gxz gyy gyz gzz

Obtaining tensor components from stored components via
prescription for each entry:

gxx gxy gxz gyx gyy gyz gzx gzy gzz
+[0] +[1] +[2] +[1] +[3] +[4] +[2] +[4] +[5]

Table 1: Storing a symmetric 3×3 tensor: The com-
ponent table works like a pointer to the stored com-
ponents.

List of stored components, mapping the component name to
each storage index:

[0] [1] [2]
Bxy Bxz Byz

Obtaining tensor components from stored components via
prescription for each entry:

Bxx Bxy Bxz Byx Byy Byz Bzx Bzy Bzz
0 +[0] +[1] −[0] 0 +[2] −[1] −[2] 0

Table 2: Storing an antisymmetric 3× 3 tensor: The
component table defines also signs during derefer-
encing, or in general, a polynomial expression of
components.

This list of “vector properties” is not claimed to be complete;
it is an early attempt to find a comprehensive scheme to
cover all geometric and algebraic quantities that occur when
performing numerical computations on manifolds. Special
attention must also be given to the case of non-tensorial
quantities such as Christoffel symbols, which do not yet fit
into this ontology.

The Cactus framework [11, 3] currently uses a scheme that
is simpler than the above; it is based on tensor algebra only
and does not support grades. However, it does offer sup-
port for tensor densities (by associating a weight with each
quantity), and it handles also certain special non-tensorial
objects, such as logarithms of scalar densities and Christof-
fel symbols. These special cases are handled as exceptions;
there is no generic scheme for them. This scheme is mostly
used for symmetry conditions, which require either reflect-
ing (mirroring) or rotating tensors. These operations require
only the symmetry information above.

What is left is a sufficiently powerful I/O layer that allows
to store and retrieve this meta-information persistently on
disk, such that a set of pure numbers can be identified for
their algebraic properties.

5.2 Storing Vector Types in HDF5
HDF5[17] is a generic scientific data format with support-
ing software, primarily an API provided in C. An HDF5



file can be viewed as a container, in which data objects are
organized in ways that are meaningful and convenient to
an application. HDF5 can be seen as a framework, rather
than a specific format itself, allowing adaption to the vari-
ous needs of diverse scientific domains [10]. The basic HDF5
object model is relatively simple, yet extremely versatile in
terms of the types of data that it can store. The model con-
tains two primary objects: groups, and datasets. Groups
provide the organizing structures, and datasets are the ba-
sic storage structures. HDF5 groups and datasets may also
have associated attributes, which are small data objects for
storing metadata defined by applications.

HDF5 allows the specification of user-defined types that
shall be stored in a file via its H5T API [18]. For instance,
a struct in C/C++ of the form

struct CartesianVector
{

double x,y,z;
};

can be expressed in the H5T API as compound type:

hid_t id = H5Tcreate(H5T_COMPOUND,
sizeof(CartesianVector) );

H5Tinsert( id, "x", 0, H5T_DOUBLE);
H5Tinsert( id, "y", sizeof(double), H5T_DOUBLE);
H5Tinsert( id, "z", 2*sizeof(double), H5T_DOUBLE);

This code fragment creates an HDF5 identifier id that repre-
sents a type of the memory layout as in the aforementioned
structure definition. This functionality provides an imple-
mentation of the component storage indices as used in table
1 and 2. More details can be found in the HDF5 reference
manual.

When writing or reading a dataset to disk, the HDF5 API
requires a type identifier to be specified with a void*. This
tells the HDF5 library how to interpret some chunk of mem-
ory. Various generic tools exist to investigate the contents
of an HDF5 file, which has a structure of a file system it-
self. “Datasets” play the role of a file, “Groups” the role
of a directory. The tool h5ls – part of the HDF5 dis-
tribution – lists the contents of an HDF5 file in the fash-
ion of the Unix tool ls, enhanced with additional informa-
tion about the type of a dataset. The following example
shows how a three-dimensional dataset CartesianVector

data[5][13][9]; appears in this file listing (shortened as
compared with actual output):

/Block00001 Dataset {5/5, 13/13, 9/9}
Location: 1:15768
Links: 1
Storage: 7020 allocated bytes
Type: struct {

"x" +0 native float
"y" +4 native float
"z" +8 native float

} 12 bytes
Data:
(0,0,0) {0.210951, -0.0406732, 0.0611351},

{0.210204, -0.0443333, 0.0611199},
{0.209324, -0.0483009, 0.0611070},
{0.208286, -0.0525892, 0.0610958},

(0,0,4) {0.207065, -0.0571980, 0.0610863},
{0.205640, -0.0621138, 0.0610815},

By virtue of HDF5, we can easily attach names to the purely
numerical values in the data field. Hereby the HDF5 library
offers various features that are very useful in practice, such
as not only taking care of conversions between big-endian
and little-endian platforms, but also conversions from double
to float component types as well as transformations between
different layouts such as {x, y, z} ⇔ {z, x, y}.

The availability of a naming scheme attached to numerical
values is already sufficient to identify a coordinate system
that is supposed to be “attached” to these numbers, in spirit
of 5.1, V. Knowing the coordinate system relative to which
the numbers are stored, in addition we need to specify the
various attributes defining the algebraic properties of this
vector type HDF5 allows to attach attributes with a dataset,
group or “named data type”. A named data type is a type id
that was created by the H5Tcreate() call but saved to disk.
It needs to be associated with a group in the file. Attributes
attached to such a named data type are shared among all
data sets of this type – the data type acts like a pointer to
a common location of a set of attributes. We now need to
define an HDF5 type for each of the vector types as defined
from the meta-information about a specific data type. The
following HDF5 listing shows the created named type, stored
in a group /Charts/Cartesian3D, as it is named“Point”and
equipped with an integer telling this data type refers to a
manifold of dimension three. This data type “Point” is then
later used to declare a dataset of points (shown with two
attributes denoting the name of the associated chart and
the dimension of the related manifold):

/Charts/Cartesian3D/Point Type
Attribute: ChartDomain scalar

Type: null-terminated ASCII string
Data: "Cartesian3D"

Attribute: Dimensions scalar
Type: native int
Data: 3

Type: shared-1:13328 struct {
"x" +0 native float
"y" +4 native float
"z" +8 native float

} 12 bytes

/Block00001 Dataset {5/5, 13/13, 9/9}
Location: 1:15768
Links: 1
Storage: 7020 allocated bytes
Type: { shared-1:13328} struct {

"x" +0 native float
"y" +4 native float
"z" +8 native float

} 12 bytes
Data:

This scheme allows to identify the dataset named “Blocks”
as representing Cartesian coordinates of point locations. Ac-
cessing the dataset “Blocks” during reading, the software



application can easily check for the attributes of the dataset
to retrieve its algebraic properties. However, doing so is
optional. Many applications might not implement the full
set of tensor algebra, but might still provide a set of use-
ful operations – such as displaying a dataset numerical as a
spreadsheet etc. The information that the dataset consists of
three floating point numbers, the only information required
for a generic operation such as displaying as spreadsheet,
is immediately available, more complex properties require
further lookup.

This naming scheme is work in progress and not yet imple-
mented or available in its full generality. Various questions
have yet to be addressed, such as a generic naming scheme
for types or the specification of multivectors. For the lat-
ter, one might utilize the HDF5 feature that a compound
type may contain other compound types as well. If such
is the appropriate solution here, will be subject of further
investigation.

5.3 Storing Multi-Vector Types in HDF5
Multivectors are linear combinations of vectors of differ-
ent basis elements, thereby forming an higher-dimensional
space. A similar functionality is achieved using HDF5 by
creating compound types from the basic vector types. For
instance, given a bivector type in 3D, created by HDF5 API
calls of the form

hid_t bivector3D_id =
H5Tcreate( H5T_COMPOUND, 3*sizeof(double) );

H5Tinsert( bivector3D_id, "yz", 0, H5T_NATIVE_DOUBLE);
H5Tinsert( bivector3D_id, "zx", 8, H5T_NATIVE_DOUBLE);
H5Tinsert( bivector3D_id, "xy", 16, H5T_NATIVE_DOUBLE);

we may create a rotor in the following as compound contain-
ing the bivector, and adding a scalar:

hid_t rotor3D_id = H5Tcreate( H5T_COMPOUND, 32 );

H5Tinsert( rotor3D_id, "cos", 0, H5T_NATIVE_DOUBLE);
H5Tinsert( rotor3D_id, "sin", 8, bivector3D_id);

We name the scalar and bivector component “cos” and “sin”
here, inspired by the construction of a rotor. What naming
scheme to use here in general, will yet need to be explored. It
is now a nice feature of HDF5 that different storage schemes
are automatically mapped, i.e. datasets stored as the fol-
lowing type

hid_t antirotor3D_id =
H5Tcreate( H5T_COMPOUND, 4*sizeof(double) );
H5Tinsert( antirotor3D_id, "sin", 0 , bivector3D_id);
H5Tinsert( antirotor3D_id, "cos", 24, H5T_NATIVE_DOUBLE);

can be directly read without further specific treatment as
a rotor3D_id dataset. This way HDF5 easily provides the
notion of a+ c∧ b ≡ c∧ b+ a, i.e., commutativity of the “+”
operator. One can also define a type which only retrieves
the bivector component of a dataset of rotors, or the scalar
component. This functionality is already provided by HDF5.

The specification of maps on multivectors, section 2.8, ap-
pears non-trivial, due to the many symmetry conditions that
occur in these cases. For instance, if the Riemann tensor as
in 3.3 would be stored by each of its tensor components, this
results in 256 values (at each point). However, only 20 need
to be stored, and under certain conditions (such as matter-
free spacetime) that may be known in advance, only 10 .
A smart type definition system that is able to express such
properties yet has to be developed. Symmetry tables such
as discussed in 5.1 might be a way to go, and a formulation
of those as attributes on HDF5 types will be developed.

6. CONCLUSION
In this article we have reviewed the various types of what is
usually called a “vector” in the context of differential geom-
etry and geometric algebra. Various algebraic types have
been identified, which are all represented numerically by
three floating point numbers in three dimensions: tangen-
tial vectors, co-vectors, bi-vectors and bi-co-vectors. Yet
these four different types have distinct algebraic properties
and should be distinguished. We demonstrated the appli-
cation of diverse vector types in four dimensions, leading to
an easier formulation of the Newmann-Penrose formalism by
virtue of Geometric Algebra. The clarity of the diverse alge-
braic types as achieved via GA thereby eases “navigation” in
Riemann space, computer graphic applications (where two
examples are given), and identification of quantities stored
in files.
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ABSTRACT
The complexity of large scale computational fluid dynamic
simulations demand powerful tools to investigate the numer-
ical results. Time surfaces are the natural higher-dimensional
extension of time lines, the evolution of a seed line of par-
ticles in the flow of a vector field. Adaptive refinement of
the evolving surface is mandatory for high quality under
reasonable computation times. In contrast to the lower-
dimensional time line, there is a new set of refinement cri-
teria that may trigger the refinement of a triangular initial
surface, such as based on triangle degeneracy, triangle area,
surface curvature etc. In this article we describe the compu-
tation of time surfaces for initially spherical surfaces. The
evolution of such virtual “bubbles” supports analysis of the
mixing quality in a stirred tank CFD simulation. We discuss
the performance of various possible refinement algorithms,
how to interface alternative software solutions and how to
effectively deliver the research to the end-users, involving
specially designed hardware representing the algorithmic pa-
rameters.

Keywords
visualization, CFD, large data, pathlines, timelines, surface
refinement

1. INTRODUCTION
1.1 Motivation
Computational Fluid Dynamics (CFD) is a computationally-
based design and analysis technique for the study of fluid
flow. CFD can provide high fidelity temporally and spatially

resolved numerical data, which can be based on meshes that
range from a few million cells to tens of millions of cells.
The data from CFD can range to several hundred thousand
time steps and be of sizes in order of terabytes.

Therefore, a key challenge here is the ability to easily mine
the time dependent CFD data; extract key features of the
flow field; display these spatially evolving features in the
space-time domain of interest. In this work, we present an
interdisciplinary effort to generate and visualize time sur-
faces of the fluid flow from the time dependent CFD data.
The implementation of time surfaces, such as an evolving
surface of a sphere, for analyzing the flow field is more rele-
vant in context of a stirred tank system. The integration of
surfaces over time generates an evolving surface that can il-
lustrate key flow characteristics such as how matter injected
in a stirred tank disperses, and in what regions of the tank is
the turbulence high. Such observations are crucial to iden-
tifying the best conditions for optimal mixing.

Figure 1: Two evolving spheres visualized just be-
fore their mixing in the Stirred Tank simulation sys-
tem.

The CFD dataset was obtained from a large eddy simula-
tion (LES) of flow inside a stirred tank reactor (STR). The



simulation is performed on 200 processors (64 bit 2.33 G
Hz Xeon quadcore) where each time-step is calculated in
approximately 36 seconds. Stirred tanks are the most com-
monly used mixing device in chemical and processing in-
dustries. Improvements in the design of stirred tanks can
translate into several billion dollar annual profit. However,
better designs of stirred tanks require detailed understand-
ing of flow and mixing behavior inside the tank. The present
study focuses on analyzing the dynamics of mixing inside
the tank. Turbulent flow inside the stirred tank was solved
numerically using LES to resolve small-scale turbulent fluc-
tuations and the immersed boundary method (IBM) in order
to model the rotating impeller blade in the framework of a
fixed curvilinear grid representing the tank geometry. The
grid is distributed over 2088 blocks and comprised of 3.1 mil-
lion cells in total. Flow variables like velocity and pressure
are defined at the center of each cell and computed for each
time step over a total of 5700 time steps representing 25 com-
plete rotations of the impeller. The handling and processing
of these voluminous, multi-block, non-uniform curvilinear
datasets to generate time surfaces and track set of parti-
cles in the fluid flow is the main challenge addressed in this
paper.

1.2 Related Work
One of the earliest works related to this problem is the gener-
ation of stream surfaces, in particular Hultquist’s attempt to
generate a triangular mesh representation of streamsurfaces.
Hultquist introduced an algorithm that constructs stream
surfaces by generating triangular tiles of adjacent stream-
lines or stream ribbons. In Hultquist’s algorithm, tiling is
done in a greedy fashion. When forming the next triangle,
the shortest leading edge is selected out of the two possible
trailing triangles and appended to the ribbon. Each ribbon
forming the stream surface is advanced until it is of equiv-
alent length to its neighboring ribbon along the curve they
share [13]. Particles are added to the trail of the stream
surface by splitting wide ribbons, and particles are removed
from the stream surface by merging two narrow (and adja-
cent) ribbons into one. Note that Hultquist’s algorithm was
developed for steady flows. Also, advancing the front of the
stream surface requires examining all the trailing ribbons.

Along the same lines, Schafhitzel et al. [15] adopted the
Hultquist criteria to define when particles are removed or
added, but they derived a point-based algorithm that is de-
signed for GPU implementation. In addition to rendering
a stream surface, they applied line integral convolution to
show the flow field patterns along the surface.

Rather than remeshing a stream surface when the surface
becomes highly distorted, von Funck et al [23] introduced a
new representation of smoke in a flow as a semi transparent
surface by adjusting opacity of triangles that get highly dis-
torted and making them fade. Throughout the evolution of
the smoke surface, they do not change the mesh, but rather
use the optical model of smoke as smoke tends to fade in
high divergent areas [23]. However, the authors report that
this method does not work well if the seeding structure is a
volume structure instead of a line structure.

Core tangibles [21] we use in this paper are physical inter-
action elements such as Cartouche menus and interaction

trays, which serve common roles across a variety of tangible
and embedded interfaces. These elements can be integrated
to dynamically bind discrete and continuous interactors to
various digital behaviors. Many toolkits support low-level
tangible user interface design, allowing designers to assemble
physical components into hardware prototypes which can be
interfaced to software applications using event-based com-
munication. Notable examples include PHidgets [10], Ar-
duino [2], iStuff [1], SmartIts [3] etc. Core tangibles focus
on tangible interfaces for visualization, simulation, presen-
tation, and education, often toward collaborative use by sci-
entist end-users [21].

2. MATHEMATICAL BACKGROUND
In the domain of computer graphics one distinguishes four
categories of integration lines q ⊂M that can be computed
from a time-dependent vector field v ∈ T (M), mathemati-
cally a section of the tangent bundle T (M) on a manifold
M describing spacetime: path lines, stream lines, streak lines
and material lines. Each category represents a different as-
pect of the vector field:

path lines (also called trajectories) follow the evolution of
a test particle as it is dragged around by the vector
field over time.

stream lines (also called field lines) represent the instan-
taneous direction of the vector field; they are identical
to path lines if the vector field is constant over time.

streak lines represent the trace of repeatedly emitted par-
ticles from the same location, such as a trail of smoke.

material lines (also called time lines) depict the location
of a set of particles, initially positioned along a seed
line, under the flow of the vector field.

Each of these lines comes with different characteristics: stream
lines and path lines are integration lines that are tangential
to the vector field at each point

q̇ ≡ d

ds
q(s) = v(q(s)) (1)

Since the underlying differential equation is of first order,
the solution is uniquely determined by specifying the initial
condition q(0) = q0 by a seed point q0 ∈ M in spacetime.
Neither stream lines nor path lines can self-intersect (in con-
trast to e.g. geodesics, which are solutions of a second order
differential equation). However, a path line may cross the
same spatial location at different times, so the spatial pro-
jection of a path line may self-intersect.

In contrast to stream and path lines, streak and material
lines are one-dimensional cuts of two-dimensional integra-
tion surfaces S ⊂ M , dim(S) = 2. This surface is con-
structed from all integral lines that pass through an event
on this initial seed line q0(τ):

S = {q : R→M, q̇(s) = v(q(s)), q(0) = q0(τ)}

The resulting surface contains a natural parametrization
S(s, τ) by the initial seed parameter τ and the integra-
tion parameter s. It carries an induced natural coordi-

nate basis of tangential vectors {~∂τ , ~∂s}, with ~∂s ≡ q̇ = v.



For a streak line, the initial seed line q0(τ) is timelike as
new particles are emitted from the same location over time,
dq0(τ)/dt 6= 0, for a material line the seed line is spacelike
dq0(τ)/dt = 0, a set of points at the same instant of time.
The respective streak/time line is the set of points of the sur-
face q(t) = St=const. for a constant time. If the integration
parameter is chosen to be proportional to the time s ∝ t,
which e.g. is the case when performing Euler steps, then the
original seed line parameter τ provides a natural parameter
for the resulting lines, i.e. each point along a time line is
advanced by the same time difference dt at each integration
step.

Refinement of lines by introducing new integration points is
mandatory to sustain numerical accuracy of the results. The
ideas of the Hultquist algorithm [12] and its improvements
by Stalling [17] could be applied also to the spatio-temporal
case, however such would result in the requirement to per-
form timelike interpolation of the vector field. For data sets
that are non-equidistant in time such as adaptive mesh re-
finement data generated from Berger-Oliger schemes [6] find-
ing the right time interval for a given spatial location this be-
comes non-trivial. For now we refrain from non-equidistant
refinement in the temporal direction (such as done in [14]),
though this is an option – if not requirement – for future
work.

A time surface is the two-dimensional generalization of a
time line, a volumetric object in spacetime. The Hultquist
algorithm, if applied to a spatio-temporal surface, discusses
criteria on refining one edge, whereas here we have a much
richer set of possible surface characteristics that may trigger
creation or deletion of integration points. Some options are
to refine a surface at locations where

• a triangle’s edge

• a triangle’s area

• a triangle’s curvature

• a triangle degeneration (“stretching”)

becomes larger than a certain threshold. Section 5.1 reviews
our results experimenting with different such criteria.

3. SOLUTION
3.1 Data Model
We use the VISH [4] visualization shell as our implementa-
tion platform. It supports the concept of fiber bundles [8]
for the data model. The data model consists of seven levels,
each of which is comprised of compatible arrays that repre-
sent a certain property of the dataset [5]. These levels, which
constitute a Bundle, are Slice, Grid, Skeleton, Representa-
tion, Field, Fragment and Compound. The Field represents
arrays of primitive data types, such as int, double, bool, etc.,
and the collection of Fields describes the entire Grid. The
Grid objects for different time slices are bundled together
and are represented as a Bundle. As an example of our im-
plementation, each Field contains values of a property such
as coordinates, connectivity information, velocity, etc. The
collection of these Fields is a Grid object, and the collection

of Grid objects for all time slices is the Bundle of the entire
dataset.

The dataset used for visualizing the features of fluid flow
contains numerical data for 2088 curvilinear blocks consti-
tuting the virtual stirred tank. The input vector field is
fragmented and these fragments are the blocks of the Grid.
The input dataset for each time slice consists of coordinate
location, pressure and fluid velocity for each grid point in
the entire 2088 blocks. These properties are stored as Fields
in the Grid object for each time slice, and these Grid objects
are then combined into a Bundle.

When a multi-block is accessed for the first time, a Uniform-
Grid-Mapper is created which is a uniform grid having the
same size as a world coordinate aligned bounding box of the
multi-block. For each cell of the Uniform-Grid-Mapper a
list of curvi linear block cells (indices) is stored which inter-
sect the Uni-Grid-Mapper cell by doing one iteration over all
curvilinear grid cells and a fast min/max test. When com-
puting the local multi-block coordinates the corresponding
Uni-Grid-Mapper cell is identified first which then selects a
small number of curvilinear cells for the Newton iteration.
Uni-Grid-Mapper objects are stored in the Grid object of
the vector field and can be reused when accessing the same
multi-block again later.

3.2 Out of Core Memory Management
The original approach taken while visualizing the features
of fluid flow is to keep the entire vector field data in the
main memory and integrate over the vector field to extract
the features. However, with the necessity of visualizing the
time-dependent 3D vector field, the original approach has
restrictions, such as the size of the time-dependent data can
easily exceed the capacity of main memory of even state of
the art workstations. In [24], the authors present the concept
of an out-of-core data handling strategy to process the large
time dependent dataset by only loading parts of the data at
a time and processing it. Two major strategies presented
for out-of-core data handling are Block-wise random access
and Slice-wise sequential access. The authors emphasize the
Slice-wise sequential access strategy for handling the data
given in time slices, however, we have implemented both
Block-wise access and Slice-wise access of time-dependent
data while generating the time surfaces for visualizing the
fluid flow.

Figure 2: Time surface computed from a vector field
given in 2088 fragments (curvilinear blocks) covering
the Stirred Tank Grid (left). Only those fragments
that affect the evolution of the time surface (right)
are actually loaded into memory.



Figure 3: Particle advection of a 2-dimensional ele-
ment vs. a 1-dimensional element. In our case, our
surface element is in 3-dimensional space spanned
over time.

The virtual stirred tank system has 2088 blocks, and each
block has vector field data for every time slice. The data for
each time slice is accessed only once as a Grid object from
the input Bundle and processed to generate the time surface
at that particular time. The integration of the time surface
does not process all the blocks, instead only the blocks that
are touched at the given time slice are loaded and processed.

At every time slice two Grid Objects are handled, one con-
taining the input data of the vector field and the other con-
sisting of seed points and connectivity information among
the seed points. The connectivity information is used to
generate the triangle mesh for surface generation. In the
case of no surface refinement, the connectivity information
is constant throughout the time slices and is stored once and
used multiple times. This conserves the memory and also
reduces the memory access. However, with surface refine-
ment the number of points and their connectivity changes
over time resulting in an increase in memory usage.

3.3 Particle Seeding and Advection
Our set of particle seeds qi,t0 for i = 0, ..., n − 1, lie on a
sphere. At any given time t > t0, the time surface is repre-
sented as a triangular mesh formed by the particles qi,tthat
have been advected using equation 1. Figure 3 illustrates the
difference between our seeding approach versus Hultquist’s
where we are evolving a surface element (a triangle) over
time as opposed to spanning a surface out of a line segment
element.

3.4 Triangular Mesh Refinements
As time elapses, the triangular mesh of particles enlarges and
twists according to the flow field. To preserve the quality of
the mesh, we refine it by adding new particles and advecting
them while updating the mesh connectivity. Of the possible
refinements criteria mentioned above, we have implemented
the following:

Edge length: If the distance between pairwise particles of
a triangle is larger than a threshold edge length, we
insert a new midpoint and subdivide the triangle ac-
cordingly.

Triangle area: If the area of the triangle formed by the
new positions of the particle triplet is larger than a
threshold area, we insert three midpoints and subdi-
vide the triangle to a new set of four adjacent triangles.

4. ALTERNATIVE APPROACHES
In order to verify and compare our results with other imple-
mentations, we also investigate alternative implementations.
Paraview [11] is one of the well known and widely used vi-
sualization tools in the scientific community. It addresses
issues pertaining to the visualization of large scale data-sets
using high-performance computing environments. It can be
perceived as a framework around the well known Visualiza-
tion Toolkit (VTK) [16] library. It not only provides a GUI
to VTK, but also provides a convenient environment for in-
tuitive visual programming of the visualization pipeline.

Paraview has implicit mechanisms for handling scale, both in
terms of data and computation [7]. It achieves this by pro-
viding generalized abstractions for parallelization and dis-
tribution. Therefore a scientist using Paraview can switch
from visualizing smaller data-sets on a desktop computer to
a much larger data-set utilizing a large HPC infrastructure,
with minimum effort.

We describe ongoing work and approaches to porting and
visualizing the given F5 (fiber-bundle) data-set, as described
in 3.1, in Paraview.

4.1 Porting the fiber-bundle (F5) to Paraview
The 500GB fiber-bundle data-set is provided in the F5 for-
mat. This format has no native support in Paraview and
some form of conversion would be required to utilize the
data.

One approach to solve this problem is to use a format con-
verter and separately convert the entire file to a natively
supported format. However, this approach causes redun-
dant data and can waste considerable amount of space on
the storage disk. An alternative solution is to write a cus-
tom reader into Paraview such that the data is read and
mapped into internal VTK data-structures. This approach
adds an additional computation time into the visualization
pipeline and can cause unnecessary slowdown of the visual-
ization process.

An ideal solution would be a combination of the above men-
tioned approaches such that both space and time optimiza-
tion can be achieved. Such a solution is possible in our case
due to a certain characteristic of the F5 format (explained
shortly) and the use of XDMF (eXtensible Data Model and
Format) [9] which is supported in Paraview.

An F5 format is characteristically a specific description or
organization of the HDF5 data format. All H5 readers and
commands which typically work on HDF5 formats also work
on F5.

The XDMF data format is an XML format for data generally
known as a ”light data”. It provides light weight descriptions
of the ”heavy data” which is typically a HDF5 file containing
the actual data. A XDMF file can thus be seen as an index
into the HDF5 file and is usually much smaller in size, taking
very less time to get generated.

Paraview is supplied with the generated XDMF file through
which it can access the data in the corresponding HDF5
(or F5) file. No other reader or converter is necessary. An



added advantage of this approach is that parallel file readers
(if supported) and other parallel algorithms can be used to
quickly access and process very large data-sets. We thus
leverage on the parallel and distributed framework already
provided in Paraview.

4.2 Details of XDMF for F5 fiber-bundle
An XDMF description of the F5 fiber-bundle is shown below.

<?xml version="1.0" ?>

<!DOCTYPE Xdmf SYSTEM "Xdmf.dtd" [

<!ENTITY HeavyData "50New.f5">

]>

<Xdmf Version="2.0">

<Domain>

<Grid Name="TimeSeries" Type="Temporal">

<Grid Name="Multiblock" Type="Spatial">

<Time Value="000000000.0000000000"/>

<Grid Name="Block00001">

<Topology TopologyType="3DSMesh"/>

<Geometry>

<DataItem Format="HDF">

&HeavyData;:/f5/path/to/Points/Block00001

</DataItem>

</Geometry>

<Attribute Name="Pressure">

<DataItem Format="HDF">

&HeavyData;:/f5/path/to/Pressure/Block00001

</DataItem>

</Attribute>

<Attribute Name="Velocity">

<DataItem Format="HDF">

&HeavyData;:/f5/path/to/Velocity/Block00001

</DataItem>

</Attribute>

</Grid>

<Grid Name="Block00002">

...

</Grid>

</Grid>

<Grid Name="TimeSeries" Type="Temporal">

<Grid Name="Multiblock" Type="Spatial">

<Time Value="000000001.0000000000"/>

....

....

</Grid>

</Grid>

</Domain>

</Xdmf>

As seen in the description above, the XDMF consists of a
collection o f Temporal-Grids which represents each time
step. Each Temporal-Grid contains a collection of Spatial-
Grids which is a representation of multiblock data. Each
multiblock data consists of curvilinear blocks. The data for
these blocks are in the HDF5 file specified within DataItems.

As of now, results from the Paraview approach are still pend-
ing and subject of further investigation.

5. RESULTS
5.1 Surface Refinement
For the different refinement criteria test cases, we bench-
marked our implementation with a 30-timestep subset (85
MB per timestep) of the stirred tank data and on a 64-bit
dual core (2GHz each) pentium laptop machine with 4GB
of RAM. We advected one sphere for the first 30 timesteps
of the simulation. Due to the small size of our test data,
we could not notice a difference in time surface meshing
quality from the visualization itself, but from the data in
tables 1 and 2, we notice a slight performance improvement
of the area criteria over the edge length criteria. Though
the number of particles is slightly higher in the second case,
this suggests that the quality of the surface with the area
criterion is better.

threshold tot points avg time/slice(sec) tot time(sec)
0.005 4269 6.480 200.868
0.01 822 1.519 47.1
0.02 258 1.165 36.101

Table 1: Timing Analysis for Edge Length Criteria

threshold tot points avg time/slice(sec) tot time(sec)
0.005 4269 6.864 212.785
0.01 837 1.454 45.08
0.02 258 1.150 35.646

Table 2: Timing Analysis for Triangle Area Criteria

From either tables 1 or 2, picking a threshold too small com-
pared to the characteristic of the triangle being examined,
results in maximum refinement, while a large enough thresh-
old leads to no refinement at all.

5.2 Timing Analysis
For the overall integration and refinement of the time sur-
face, we used a larger dataset of size 12GB with 150 timesteps.
We ran the implementation on a 64bit quadcore workstation
with 64 GB of RAM. We used the edge length criterion with
a threshold of 0.01.

time no. of points time for slice(sec) time/point(ms)
0 516 0.4 7.0
50 3468 2.0 5.9
100 15822 7.4 4.8
125 41574 18.8 4.7
150 129939 49.7 4.0

Table 3: Timing Analysis for Threshold=0.01

The listing in the above table is for 12 GB of input data
from an initial time of 0 to a final time of 150. Initially the
number of points is 516, which increases over time as more
points are generated for surface refinement. As the number
of points increases, the computation time for the next time
slice increases. However, the time per point seems to be
slowly decreasing. This may be because more and more
points tend to locate in the same block and the data of one
block is shared by many points, resulting in less memory
access per point.



Figure 4: Images showing evolution of two spheres
at time slices 0, 50, 100, 125 and 150, respectively
from left-top to bottom, as seen top-view of the
stirred tank. First image shows the seed spheres,
and the last image shows two sphere just before the
surfaces are about to mix.

6. DEPLOYMENT TO END USERS
Results of the algorithm can be investigated better if we ex-
plore the entire time evolution of the surface interactively,
by navigating through space and time. In most visualization
environments, the graphical user interface is tightly coupled
with the underlying visualization functionality. One feature
of VISH is that it decouples the interface from the under-
lying visualization application. At least in principle, this
makes it as easy to couple VISH to a CAVE immersive en-
vironment, a web based distributed interface, or physical
interaction devices as to the provided traditional 2D graph-
ical user interface. As an example of this, we have based a
significant portion of our interaction with the present large
dataset from stirred tank with “viz tangible” interaction de-
vices. An example of this is pictured in Figure 5. Earlier
stages of this work have been described in [22, 20, 19, 18].

An application programming interface (API) is under de-
velopment which supports coupling tangibles to VISH and
other visualization environments. In this API, when interac-
tion control messages are sent (triggered by physical events,
such as RFID entrance/exit or the turning of a knob), they
trigger corresponding methods in VISH. We use cartouches –

Figure 5: User physically manipulating VISH appli-
cation through “viz tangibles” interaction devices

RFID-tagged interaction cards [19, 20] – as physical interac-
tors which describe data and operations within the VISH en-
vironment. Users can access, explore and manipulate datasets
by placing appropriate cartouches on an interaction tray
(Figures 5, 6), and making appropriate button presses, wheel
rotations, etc.

Figure 6: Cartouche cards for viewpoint control and
parameter adjustment operations

In our present implementation, we have used two classes of
cartouche objects. These are summarized below:

1. Viewpoint operations: Specific supported view point
controls include rotation, zooming, and translation. In
the case of rotation and translation, individual wheels
are bounds to the (e.g.) x, y, z axis. In the context
of zooming or time step navigation, wheels represent
different scales of space and time navigation.

2. Parameter Adjustment operations: Our current imple-
mentation includes time surface seedings and surface
transparency adjustment. For time surface seedings,
we steer center of seeds, number of subdivisions, etc.



to parameter wheels. Within surface transparency ad-
justment, wheels are bounded to different scales of sur-
face transparency.

In future, we hope quantities in high dimensional parameter
space such as curvature and torsion of the surface can also
be explored effectively with the integration of “viz tangibles”
and the API.

7. CONCLUSION
While most of the previous visualization techniques for fluid
flow have concentrated on flow streamlines and pathlines,
our approach has been directed towards generating the time
surfaces of the flow. The interdependencies of integration
over a vector field require random access to amounts of
data beyond a single workstation’s capabilities, while at
the same time requiring shared memory for required refine-
ments. This limits available hardware and impacts paral-
lelization efforts. The evolution of a seed surface required
refinement of its corresponding triangular mesh to preserve
the quality of the time surface over time. From the results
we noticed a slight superior quality of the area refinement
criterion over the edge length criterion.
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